# 深度实值买购和卖购组合的牛差策略 # 策略说明:使用深度实值买购期权替代ETF持仓,结合卖购期权构建牛差组合 # 参考资料:基于加百列分享中的50ETF期权备兑认购策略改进 import jqdata from jqdata import * import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt import os from enum import Enum plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False class StrategyType(Enum): """策略类型枚举""" BULL_SPREAD = "bull_spread" # 牛差组合策略(深度实值买购+卖购) class DeepITMBullSpreadStrategy: """深度实值买购和卖购组合的牛差策略""" def __init__(self, underlying_symbol='510300.XSHG', start_date='2024-01-01', end_date='2024-12-31'): """初始化策略参数""" self.underlying_symbol = underlying_symbol self.start_date = start_date self.end_date = end_date # 策略参数设置 - 对应README.md中的阈值设定 self.config = { 'contract_size': 30, # 一组张数 'min_premium': {'510300': 0.03, '510050': 0.05, '159915': 0.03}, # 最小权利金 'min_days_to_expiry': 15, # 最少开仓日期(距离到期日) 'call_time_value_threshold': 0.015, # 买购时间价值阈值(README中为0.015) 'put_close_premium_threshold': 0.005, # 卖购平仓权利金阈值(README中为50单位,转换为0.005) 'max_days_before_expiry': 3, # 合约到期移仓日期最大(交易日) 'min_days_before_expiry': 1, # 合约到期移仓日期最小(交易日) 'add_position_threshold': {'510300': 0.2, '510050': 0.1, '159915': 0.15}, # 加仓窗口阈值 'max_add_positions': 2, # 加仓次数上限 'max_profit_close_threshold': 0.83 } # 持仓和交易记录 self.positions = [] self.trade_records = [] # CSV文件输出设置 self.transaction_csv_path = 'transaction.csv' self.position_csv_path = 'position.csv' # 验证合约数量 self._validate_contract_size() self.daily_positions = [] # 每日持仓记录 # 账户管理器回调(用于通知账户管理器更新汇总) self.account_manager_callback = None # 获取交易日历和月度分割点 self.trade_days = pd.Series(index=jqdata.get_trade_days(start_date, end_date)) self.trade_days.index = pd.to_datetime(self.trade_days.index) self.month_split = list(self.trade_days.resample('M', label='left').mean().index) + [pd.to_datetime(end_date)] # 调试输出:显示月份分割点 # print(f"Month split 计算结果 ({len(self.month_split)}个分割点):") for i, split_date in enumerate(self.month_split): # print(f" 索引{i}: {split_date.strftime('%Y-%m-%d')}") if i < len(self.month_split) - 1: next_split = self.month_split[i + 1] # print(f" 月份{i}覆盖范围: {split_date.strftime('%Y-%m-%d')} 到 {next_split.strftime('%Y-%m-%d')}") # 用于存储前一日ETF价格,计算当日涨幅 self.previous_etf_price = None def _validate_contract_size(self): """验证合约数量的有效性""" contract_size = self.config.get('contract_size', 30) if not isinstance(contract_size, (int, float)) or contract_size <= 0: print(f"警告: 合约数量无效({contract_size}),重置为默认值30张") self.config['contract_size'] = 30 elif contract_size > 200: # 设置一个合理的上限 print(f"警告: 合约数量过大({contract_size}),限制为200张") self.config['contract_size'] = 200 else: # 确保为整数 self.config['contract_size'] = int(contract_size) def get_safe_contract_size(self): """安全获取合约数量,确保返回有效值""" contract_size = self.config.get('contract_size', 30) if not isinstance(contract_size, (int, float)) or contract_size <= 0: print(f"警告: 运行时检测到合约数量无效({contract_size}),使用默认值30张") contract_size = 30 self.config['contract_size'] = 30 elif contract_size > 200: print(f"警告: 运行时检测到合约数量过大({contract_size}),限制为200张") contract_size = 200 self.config['contract_size'] = 200 return int(contract_size) def get_underlying_code(self): """获取标的ETF的简化代码""" if '510300' in self.underlying_symbol: return '510300' elif '510050' in self.underlying_symbol: return '510050' elif '159915' in self.underlying_symbol: return '159915' return '510300' # 默认 def get_option_contracts(self, trade_date, month_idx, contract_type='CO'): """获取指定月份的期权合约信息""" underlying_code = self.get_underlying_code() # 基于自然月份计算期权筛选范围 query_date = trade_date.date() if hasattr(trade_date, 'date') else trade_date current_year = query_date.year current_month = query_date.month # print(f" 期权筛选调试: month_idx={month_idx}, query_date={query_date}, 当前年月={current_year}-{current_month:02d}") # 计算目标月份 if month_idx == 0: # 当月期权:到期日在当前月份 target_year = current_year target_month = current_month elif month_idx == 1: # 下月期权:到期日在下个月份 if current_month == 12: target_year = current_year + 1 target_month = 1 else: target_year = current_year target_month = current_month + 1 else: # 其他月份:使用原来的month_split逻辑作为后备 start_date = self.month_split[month_idx].date() if hasattr(self.month_split[month_idx], 'date') else self.month_split[month_idx] end_date = self.month_split[month_idx + 1].date() if hasattr(self.month_split[month_idx + 1], 'date') else self.month_split[month_idx + 1] print(f" 使用month_split后备逻辑: 月份索引{month_idx}, 范围{start_date}到{end_date}") if month_idx <= 1: # 计算目标月份的完整范围 start_date = pd.to_datetime(f'{target_year}-{target_month:02d}-01').date() if target_month == 12: end_date = pd.to_datetime(f'{target_year + 1}-01-01').date() - pd.Timedelta(days=1) else: end_date = pd.to_datetime(f'{target_year}-{target_month + 1:02d}-01').date() - pd.Timedelta(days=1) # print(f" 月份索引{month_idx}({target_year}-{target_month:02d})期权筛选范围: {start_date} 到 {end_date}") q_contract_info = query( opt.OPT_CONTRACT_INFO.code, opt.OPT_CONTRACT_INFO.trading_code, opt.OPT_CONTRACT_INFO.name, opt.OPT_CONTRACT_INFO.exercise_price, opt.OPT_CONTRACT_INFO.last_trade_date, opt.OPT_CONTRACT_INFO.list_date ).filter( opt.OPT_CONTRACT_INFO.contract_type == contract_type, opt.OPT_CONTRACT_INFO.exchange_code == 'XSHG', opt.OPT_CONTRACT_INFO.last_trade_date >= start_date, opt.OPT_CONTRACT_INFO.last_trade_date <= end_date, opt.OPT_CONTRACT_INFO.list_date < query_date ) contract_info = opt.run_query(q_contract_info) contract_info = contract_info[contract_info['trading_code'].str[:6] == underlying_code] # 调试输出:显示筛选到的期权到期日 if not contract_info.empty: print(f" 筛选到{len(contract_info)}个期权,到期日范围:{contract_info['last_trade_date'].min()} 到 {contract_info['last_trade_date'].max()}") else: print(f" 未筛选到任何期权") return contract_info def get_monthly_option_candidates(self, trade_date, month_idx, silent=False): """获取指定月份的所有认购期权候选信息 返回: (contract_info, month_info, failure_reason) - contract_info为期权列表,month_info为月份信息,failure_reason为失败原因(成功时为None) """ # if not silent: # print(f"{trade_date.strftime('%Y-%m-%d')} 获取月份索引 {month_idx} 的认购期权候选信息") # 获取期权合约信息 contract_info = self.get_option_contracts(trade_date, month_idx, 'CO') if contract_info.empty: failure_reason = "无可用认购期权合约" if not silent: print(f" 月份索引 {month_idx} {failure_reason}") # 增加调试信息,显示查询的时间范围 if month_idx < len(self.month_split) - 1: start_date = self.month_split[month_idx].date() if hasattr(self.month_split[month_idx], 'date') else self.month_split[month_idx] end_date = self.month_split[month_idx + 1].date() if hasattr(self.month_split[month_idx + 1], 'date') else self.month_split[month_idx + 1] print(f" 查询时间范围: {start_date} 到 {end_date}") print(f" 查询日期: {trade_date}") print(f" 标的代码: {self.get_underlying_code()}") print(f" month_split总长度: {len(self.month_split)}") return None, None, failure_reason # 获取月份信息 underlying_code = self.get_underlying_code() min_days_to_expiry = self.config['min_days_to_expiry'] # 为每个合约添加额外信息 query_date = trade_date.date() if hasattr(trade_date, 'date') else trade_date candidates = [] # 统计失败原因 expiry_rejected_count = 0 price_missing_count = 0 price_error_count = 0 # if not silent: # print(f" 查询到 {len(contract_info)} 个认购期权合约,开始获取价格信息:") for idx, contract in contract_info.iterrows(): # 检查到期日 expiry_date = pd.to_datetime(contract['last_trade_date']) trade_date_obj = trade_date.date() if hasattr(trade_date, 'date') else trade_date days_to_expiry = len(get_trade_days(trade_date_obj, expiry_date.date())) - 1 if days_to_expiry < min_days_to_expiry: expiry_rejected_count += 1 # if not silent: # print(f" 行权价 {contract['exercise_price']:.3f}: 到期时间不足 ({days_to_expiry} < {min_days_to_expiry})") continue # 查询期权价格 try: q_price = query(opt.OPT_DAILY_PRICE.close).filter( opt.OPT_DAILY_PRICE.code == contract['code'], opt.OPT_DAILY_PRICE.date == query_date ) price_result = opt.run_query(q_price) if price_result.empty: price_missing_count += 1 if not silent: print(f" 行权价 {contract['exercise_price']:.3f}: 无价格数据") continue option_price = price_result['close'].iloc[0] candidate = { 'code': contract['code'], 'exercise_price': contract['exercise_price'], 'price': option_price, 'expiry_date': contract['last_trade_date'], 'days_to_expiry': days_to_expiry, 'contract_info': contract } candidates.append(candidate) # if not silent: # print(f" 行权价 {contract['exercise_price']:.3f}: 期权价格 {option_price:.4f}, 剩余天数 {days_to_expiry}") except Exception as e: price_error_count += 1 if not silent: print(f" 行权价 {contract['exercise_price']:.3f}: 价格查询失败 ({str(e)})") continue if not candidates: # 构建详细的失败原因 total_contracts = len(contract_info) failure_parts = [] if expiry_rejected_count > 0: failure_parts.append(f"到期时间不足{expiry_rejected_count}个") if price_missing_count > 0: failure_parts.append(f"无价格数据{price_missing_count}个") if price_error_count > 0: failure_parts.append(f"价格查询失败{price_error_count}个") if failure_parts: failure_reason = f"共{total_contracts}个期权合约,但均不符合条件:" + "、".join(failure_parts) else: failure_reason = f"共{total_contracts}个期权合约,但均不符合基本条件" # if not silent: # print(f" 月份索引 {month_idx} 无符合基本条件的期权候选") return None, None, failure_reason month_info = { 'month_idx': month_idx, 'underlying_code': underlying_code, 'min_days_to_expiry': min_days_to_expiry, 'query_date': query_date } if not silent: print(f" 成功获取 {len(candidates)} 个有效期权候选") # print(f" 月份索引 {month_idx} 的认购期权候选信息: {candidates}") return candidates, month_info, None def select_sell_call_from_candidates(self, candidates, etf_price, min_premium, silent=False): """从候选期权中选择卖购期权(虚值期权) 返回: (selected_call, reason) - selected_call为期权信息或None,reason为失败原因或None """ # if not silent: # print(f" 从 {len(candidates)} 个候选中筛选虚值卖购期权(行权价 > ETF价格 {etf_price:.4f}):") # 筛选虚值期权(行权价 > ETF价格) otm_candidates = [c for c in candidates if c['exercise_price'] > etf_price] if not otm_candidates: reason = f"无虚值期权:所有{len(candidates)}个期权的行权价都 <= ETF价格{etf_price:.4f}" if not silent: print(f" 筛选结果:无虚值期权(所有期权行权价都 <= ETF价格)") for c in candidates: option_type = "虚值" if c['exercise_price'] > etf_price else "实值" print(f" 行权价: {c['exercise_price']:.3f} ({option_type})") return None, reason if not silent: print(f" etf价格为{etf_price:.4f}时,筛选出 {len(otm_candidates)} 个虚值期权:") for c in otm_candidates: price_spread = c['exercise_price'] - etf_price print(f" 行权价: {c['exercise_price']:.3f}, 价差: {price_spread:.4f}, 价格: {c['price']:.4f}") # 按行权价排序,选择最接近ETF价格的虚值期权(行权价最小的) otm_candidates.sort(key=lambda x: x['exercise_price']) closest_otm = otm_candidates[0] if not silent: print(f" 选择最接近的虚值期权:行权价 {closest_otm['exercise_price']:.3f}, 价格 {closest_otm['price']:.4f}") # 检查权利金要求 if closest_otm['price'] >= min_premium: if not silent: print(f" ✓ 满足权利金要求 ({closest_otm['price']:.4f} >= {min_premium:.4f})") # 构建返回结果 selected_call = { 'code': closest_otm['code'], 'exercise_price': closest_otm['exercise_price'], 'price': closest_otm['price'], 'expiry_date': closest_otm['expiry_date'], 'price_spread': closest_otm['exercise_price'] - etf_price, 'days_to_expiry': closest_otm['days_to_expiry'] } return selected_call, None else: reason = f"期权权利金不足:{closest_otm['price']:.4f} < {min_premium:.4f}" if not silent: print(f" ✗ 权利金不足 ({closest_otm['price']:.4f} < {min_premium:.4f})") return None, reason def select_buy_call_from_candidates(self, candidates, etf_price, time_value_threshold, trade_date, silent=False): """从候选期权中选择深度实值买购期权 返回: (selected_call, reason) - selected_call为期权信息或None,reason为失败原因或None """ if not silent: print(f" 从 {len(candidates)} 个候选中筛选深度实值买购期权(行权价 < ETF价格 {etf_price:.4f}):") # 筛选深度实值期权(行权价 < ETF价格) itm_candidates = [c for c in candidates if c['exercise_price'] < etf_price] if not itm_candidates: reason = f"无深度实值期权:所有{len(candidates)}个期权的行权价都 >= ETF价格{etf_price:.4f}" if not silent: print(f" 筛选结果:无深度实值期权(所有期权行权价都 >= ETF价格)") for c in candidates: option_type = "实值" if c['exercise_price'] < etf_price else "虚值" print(f" 行权价: {c['exercise_price']:.3f} ({option_type})") return None, reason if not silent: print(f" 筛选出 {len(itm_candidates)} 个深度实值期权:") for c in itm_candidates: print(f" 行权价: {c['exercise_price']:.3f}, 价格: {c['price']:.4f}") # 按行权价与ETF价格的差异排序(升序,最接近的在前) itm_candidates.sort(key=lambda x: abs(x['exercise_price'] - etf_price)) if not silent: print(f" 按距离ETF价格的差异排序,检查时间价值(阈值: {time_value_threshold:.4f}):") # 检查时间价值 for candidate in itm_candidates: intrinsic_value = etf_price - candidate['exercise_price'] time_value = round(max(0, candidate['price'] - intrinsic_value), 4) if not silent: print(f" 行权价 {candidate['exercise_price']:.3f}: 内在价值 {intrinsic_value:.4f}, 时间价值 {time_value:.4f}") if time_value < time_value_threshold: if not silent: print(f" ✓ 满足时间价值要求 (< {time_value_threshold:.4f})") # 构建返回结果 selected_call = { 'code': candidate['code'], 'exercise_price': candidate['exercise_price'], 'price': candidate['price'], 'time_value': time_value, 'expiry_date': candidate['expiry_date'], 'price_diff': abs(candidate['exercise_price'] - etf_price), 'days_to_expiry': candidate['days_to_expiry'] } return selected_call, None else: if not silent: print(f" ✗ 时间价值过高 ({time_value:.4f} >= {time_value_threshold:.4f})") reason = f"所有{len(itm_candidates)}个深度实值期权的时间价值都过高(需<{time_value_threshold:.4f})" if not silent: print(f" 深度实值买购期权选择失败:所有期权时间价值都过高") return None, reason def try_bull_spread_for_month(self, trade_date, etf_price, month_idx, is_current_month=True, silent=False): """尝试指定月份的牛差策略 返回: (buy_call, sell_call, reason) - 成功返回两个期权,失败返回None和原因 """ month_type = "当月" if is_current_month else "下月" underlying_code = self.get_underlying_code() base_premium = self.config['min_premium'][underlying_code] min_premium = base_premium * 0.6 if is_current_month else base_premium time_value_threshold = self.config['call_time_value_threshold'] if not silent: print(f"{trade_date.strftime('%Y-%m-%d')} 尝试{month_type}牛差策略(月份索引:{month_idx})") print(f" 权利金阈值: {min_premium:.4f},时间价值阈值: {time_value_threshold:.4f}") # 1. 获取月份期权候选 candidates, month_info, failure_reason = self.get_monthly_option_candidates(trade_date, month_idx, silent) if not candidates: reason = f"{month_type}期权候选获取失败:{failure_reason}" if not silent: print(f" {month_type}牛差策略失败:{reason}") return None, None, reason # 2. 选择卖购期权 sell_call, sell_reason = self.select_sell_call_from_candidates(candidates, etf_price, min_premium, silent) if not sell_call: reason = f"{month_type}卖购期权选择失败:{sell_reason}" if not silent: print(f" {month_type}牛差策略失败:{reason}") return None, None, reason # 3. 选择买购期权(必须与卖购期权到期日一致) buy_call, buy_reason = self.select_buy_call_from_candidates(candidates, etf_price, time_value_threshold, trade_date, silent) if not buy_call: reason = f"{month_type}买购期权选择失败:{buy_reason}" if not silent: print(f" {month_type}牛差策略失败:{reason}") return None, None, reason # 4. 验证到期日是否一致 sell_expiry = pd.to_datetime(sell_call['expiry_date']) buy_expiry = pd.to_datetime(buy_call['expiry_date']) if buy_expiry != sell_expiry: reason = f"买购和卖购期权到期日不一致:买购到期{buy_expiry.strftime('%Y-%m-%d')} vs 卖购到期{sell_expiry.strftime('%Y-%m-%d')}" if not silent: print(f" {month_type}牛差策略失败:{reason}") return None, None, reason if not silent: print(f" {month_type}牛差策略匹配成功:") print(f" 卖购期权:行权价 {sell_call['exercise_price']:.3f}, 价格 {sell_call['price']:.4f}") print(f" 买购期权:行权价 {buy_call['exercise_price']:.3f}, 价格 {buy_call['price']:.4f}") print(f" 到期日:{sell_expiry.strftime('%Y-%m-%d')}") return buy_call, sell_call, None def calculate_bull_spread_profit(self, buy_call, sell_call, contract_size=None): """计算牛差组合的盈利情况""" if contract_size is None: contract_size = self.get_safe_contract_size() # 单张最大盈利 = (卖购行权价 - 买购行权价 - 买购权利金 + 卖购权利金) * 10000 max_profit_per_contract = ( sell_call['exercise_price'] - buy_call['exercise_price'] - buy_call['price'] + sell_call['price'] ) * 10000 # 最小盈利(卖购权利金) min_profit_per_contract = sell_call['price'] * 10000 return { 'max_profit_per_contract': max_profit_per_contract, 'min_profit_per_contract': min_profit_per_contract, 'total_max_profit': max_profit_per_contract * contract_size, 'total_min_profit': min_profit_per_contract * contract_size } def _create_bull_spread_position(self, trade_date, etf_price, buy_call, sell_call, position_type='main', silent=False, save_to_csv=True): """直接使用已选择的期权信息创建牛差仓位,避免重复期权选择""" # 输出期权选择成功的信息 if not silent: print(f"{trade_date.strftime('%Y-%m-%d')} 卖购期权选择成功,sell_call: {sell_call}") print(f"{trade_date.strftime('%Y-%m-%d')} 检查买购期权选择,buy_call: {buy_call}") # 安全获取合约数量 contract_size = self.get_safe_contract_size() # 计算盈利信息 profit_info = self.calculate_bull_spread_profit(buy_call, sell_call, contract_size) # 创建仓位记录 position = { 'open_date': trade_date, 'etf_price': etf_price, 'buy_call': buy_call, 'sell_call': sell_call, 'contract_size': contract_size, 'profit_info': profit_info, 'position_type': position_type, 'status': 'open', 'strategy_type': StrategyType.BULL_SPREAD, # 标记策略类型 'add_position_trigger_price': etf_price - self.config['add_position_threshold'][self.get_underlying_code()] if position_type == 'main' else None } self.positions.append(position) # 记录交易(内存) trade_record = { '交易日期': trade_date, '交易类型': '开仓', '仓位类型': position_type, '策略类型': StrategyType.BULL_SPREAD.value, # 新增字段 'ETF标的': self.underlying_symbol, '买购期权价格': buy_call['price'], '买购期权行权价': buy_call['exercise_price'], '买购期权到期日': buy_call['expiry_date'], '卖购期权价格': sell_call['price'], '卖购期权行权价': sell_call['exercise_price'], '卖购期权到期日': sell_call['expiry_date'], '合约数量': contract_size, 'ETF价格': etf_price, '单张最大盈利': profit_info['max_profit_per_contract'], '单张最小盈利': profit_info['min_profit_per_contract'], '总最大盈利': profit_info['total_max_profit'], '总最小盈利': profit_info['total_min_profit'] } self.trade_records.append(trade_record) # 保存交易记录到CSV(如果需要) if save_to_csv: self.save_transaction_to_csv(trade_record) return position def try_bull_spread_strategy(self, trade_date, etf_price, month_idx, position_type='main', silent=False, save_to_csv=True): """尝试牛差策略:深度实值买购+卖购期权""" # 1. 先尝试当月牛差策略 buy_call, sell_call, reason = self.try_bull_spread_for_month(trade_date, etf_price, month_idx, is_current_month=True, silent=silent) if buy_call and sell_call: if not silent: print(f" 当月牛差策略匹配成功,执行开仓") return self._create_bull_spread_position(trade_date, etf_price, buy_call, sell_call, position_type, silent, save_to_csv), None # 2. 当月失败,尝试下月牛差策略 # 计算下个月的月份索引 trade_date_obj = trade_date.date() if hasattr(trade_date, 'date') else trade_date current_year = trade_date_obj.year current_month = trade_date_obj.month # 计算下个月 if current_month == 12: next_year = current_year + 1 next_month = 1 else: next_year = current_year next_month = current_month + 1 # 下个月第一天和最后一天 next_month_start = pd.to_datetime(f'{next_year}-{next_month:02d}-01').date() if next_month == 12: next_month_end = pd.to_datetime(f'{next_year + 1}-01-01').date() - pd.Timedelta(days=1) else: next_month_end = pd.to_datetime(f'{next_year}-{next_month + 1:02d}-01').date() - pd.Timedelta(days=1) # 查找对应的月份索引 next_month_idx = None for i, month_date in enumerate(self.month_split[:-1]): month_start = month_date.date() if hasattr(month_date, 'date') else month_date month_end = self.month_split[i + 1].date() if hasattr(self.month_split[i + 1], 'date') else self.month_split[i + 1] # 检查下月范围是否与month_split中的某个月份重叠 if (next_month_start <= month_end and next_month_end >= month_start): next_month_idx = i break if next_month_idx is None: if not silent: print(f" 无法找到下月({next_year}-{next_month:02d})对应的月份索引") return None, f"牛差策略失败: 当月原因({reason}),且无下月期权可用" buy_call_next, sell_call_next, reason_next = self.try_bull_spread_for_month(trade_date, etf_price, next_month_idx, is_current_month=False, silent=silent) if buy_call_next and sell_call_next: if not silent: print(f" 下月牛差策略匹配成功,执行开仓") return self._create_bull_spread_position(trade_date, etf_price, buy_call_next, sell_call_next, position_type, silent, save_to_csv), None # 两个月份都失败 combined_reason = f"当月失败({reason}),下月失败({reason_next})" return None, f"牛差策略失败: {combined_reason}" def open_position(self, trade_date, etf_price, position_type='main', silent=False, save_to_csv=True): """开仓方法 - 牛差策略(深度实值买购+卖购)""" # 确定月份索引 month_idx = 0 for i, month_date in enumerate(self.month_split[:-1]): if trade_date >= month_date: month_idx = i # 先输出开始尝试的日志,确保顺序正确 if not silent: print(f"{trade_date.strftime('%Y-%m-%d')} 开始尝试牛差策略") # 尝试牛差策略(深度实值买购+卖购) result, reason = self.try_bull_spread_strategy(trade_date, etf_price, month_idx, position_type, silent, save_to_csv) if result is not None: return result # 牛差策略失败,输出详细原因 print(f"{trade_date.strftime('%Y-%m-%d')} 牛差策略开仓失败,原因:{reason}") return None def should_close_position(self, position, current_date, etf_price): """判断是否应该平仓 - 支持两种策略类型""" if position['status'] != 'open': return False, None # 获取策略类型,兼容旧版本数据 strategy_type = position.get('strategy_type', StrategyType.BULL_SPREAD) # 检查合约到期时间 expiry_date = pd.to_datetime(position['sell_call']['expiry_date']) # 确保日期格式正确 current_date_obj = current_date.date() if hasattr(current_date, 'date') else current_date expiry_date_obj = expiry_date.date() if hasattr(expiry_date, 'date') else expiry_date days_to_expiry = len(get_trade_days(current_date_obj, expiry_date_obj)) - 1 # 到期日临近(对所有策略类型都适用) if days_to_expiry <= self.config['max_days_before_expiry']: return True, '过期时间平仓' # 获取卖购行权价 sell_call_strike = position['sell_call']['exercise_price'] # 牛差策略的平仓逻辑:根据ETF价格与卖购行权价关系选择条件 if etf_price >= sell_call_strike: # ETF价格大于等于卖购行权价时,检查最大盈利平仓条件 return self._check_max_profit_close_condition(position, current_date, etf_price, sell_call_strike) else: # ETF价格小于卖购行权价时,检查卖购权利金剩余平仓条件 return self._check_sell_call_close_condition(position, current_date, etf_price, sell_call_strike) return False, None def _check_max_profit_close_condition(self, position, current_date, etf_price, sell_call_strike): """检查最大盈利平仓条件(牛差策略专用)""" try: query_date = current_date.date() if hasattr(current_date, 'date') else current_date # 获取买购期权价格 q_buy_price = query(opt.OPT_DAILY_PRICE.close).filter( opt.OPT_DAILY_PRICE.code == position['buy_call']['code'], opt.OPT_DAILY_PRICE.date == query_date ) buy_price_result = opt.run_query(q_buy_price) # 获取卖购期权价格 q_sell_price = query(opt.OPT_DAILY_PRICE.close).filter( opt.OPT_DAILY_PRICE.code == position['sell_call']['code'], opt.OPT_DAILY_PRICE.date == query_date ) sell_price_result = opt.run_query(q_sell_price) if not buy_price_result.empty and not sell_price_result.empty: current_buy_call_price = buy_price_result['close'].iloc[0] current_sell_call_price = sell_price_result['close'].iloc[0] # 计算当前盈利 buy_call_pnl = (current_buy_call_price - position['buy_call']['price']) * 10000 sell_call_pnl = (position['sell_call']['price'] - current_sell_call_price) * 10000 current_pnl_per_contract = buy_call_pnl + sell_call_pnl # 获取最大盈利 max_profit_per_contract = position['profit_info']['max_profit_per_contract'] # 判断是否达到平仓阈值 if max_profit_per_contract > 0 and current_pnl_per_contract >= max_profit_per_contract * self.config['max_profit_close_threshold']: print(f"{current_date.strftime('%Y-%m-%d')} 触发最大盈利平仓: 当前盈利: {current_pnl_per_contract:.2f}, 最大盈利: {max_profit_per_contract:.2f}") return True, '最大盈利平仓' except Exception as e: print(f"{current_date.strftime('%Y-%m-%d')} 检查最大盈利平仓条件时出错: {e}") return False, None def _check_sell_call_close_condition(self, position, current_date, etf_price, sell_call_strike): """检查卖购权利金剩余平仓条件(两种策略共用)""" try: query_date = current_date.date() if hasattr(current_date, 'date') else current_date q_price = query(opt.OPT_DAILY_PRICE.close).filter( opt.OPT_DAILY_PRICE.code == position['sell_call']['code'], opt.OPT_DAILY_PRICE.date == query_date ) price_result = opt.run_query(q_price) if not price_result.empty: current_sell_call_price = price_result['close'].iloc[0] if current_sell_call_price < self.config['put_close_premium_threshold']: print(f"{current_date.strftime('%Y-%m-%d')} 触发卖购权利金平仓: 卖购期权价格{current_sell_call_price:.4f}") return True, '卖购权利金平仓' except Exception as e: print(f"{current_date.strftime('%Y-%m-%d')} 检查卖购权利金平仓条件时出错: {e}") return False, None def close_position(self, position, current_date, etf_price, reason): """平仓操作 - 支持两种策略类型""" try: # 获取策略类型,兼容旧版本数据 strategy_type = position.get('strategy_type', StrategyType.BULL_SPREAD) query_date = current_date.date() if hasattr(current_date, 'date') else current_date # 获取卖购期权当前价格(两种策略都需要) q_sell_price = query(opt.OPT_DAILY_PRICE.close).filter( opt.OPT_DAILY_PRICE.code == position['sell_call']['code'], opt.OPT_DAILY_PRICE.date == query_date ) sell_price_result = opt.run_query(q_sell_price) if sell_price_result.empty: raise Exception(f"无法获取卖购期权{position['sell_call']['code']}在{query_date}的价格数据") sell_call_close_price = sell_price_result['close'].iloc[0] # 计算卖购期权盈亏 sell_call_pnl = (position['sell_call']['price'] - sell_call_close_price) * position['contract_size'] * 10000 # 获取买购期权当前价格 q_buy_price = query(opt.OPT_DAILY_PRICE.close).filter( opt.OPT_DAILY_PRICE.code == position['buy_call']['code'], opt.OPT_DAILY_PRICE.date == query_date ) buy_price_result = opt.run_query(q_buy_price) if buy_price_result.empty: raise Exception(f"无法获取买购期权{position['buy_call']['code']}在{query_date}的价格数据") buy_call_close_price = buy_price_result['close'].iloc[0] buy_call_pnl = (buy_call_close_price - position['buy_call']['price']) * position['contract_size'] * 10000 total_pnl = buy_call_pnl + sell_call_pnl - 10 # 两种策略都扣除相同手续费 # 牛差策略平仓详情输出 print(f"{current_date.strftime('%Y-%m-%d')} 牛差策略平仓详情:") print(f" 深度实值买购:开仓价格{position['buy_call']['price']:.4f} -> 平仓价格{buy_call_close_price:.4f}") print(f" 深度实值买购盈亏:({buy_call_close_price:.4f} - {position['buy_call']['price']:.4f}) × {position['contract_size']} × 10000 = {buy_call_pnl:.2f}元") print(f" 卖购期权:开仓价格{position['sell_call']['price']:.4f} -> 平仓价格{sell_call_close_price:.4f}") print(f" 卖购期权盈亏:({position['sell_call']['price']:.4f} - {sell_call_close_price:.4f}) × {position['contract_size']} × 10000 = {sell_call_pnl:.2f}元") print(f" 手续费:-10元") print(f" 组合总盈亏:{buy_call_pnl:.2f} + {sell_call_pnl:.2f} - 10 = {total_pnl:.2f}元") # 更新仓位状态 position['status'] = 'closed' position['close_date'] = current_date position['close_etf_price'] = etf_price position['close_reason'] = reason position['buy_call_close_price'] = buy_call_close_price position['sell_call_close_price'] = sell_call_close_price position['pnl'] = total_pnl # 记录交易(内存)- 两种策略都有买购期权信息 trade_record = { '交易日期': current_date, '交易类型': '平仓', '仓位类型': position['position_type'], '策略类型': strategy_type.value, # 策略类型字段 'ETF标的': self.underlying_symbol, '买购期权价格': position['buy_call']['price'], # 两种策略都有买购期权 '买购期权行权价': position['buy_call']['exercise_price'], '买购期权到期日': position['buy_call']['expiry_date'], '卖购期权价格': position['sell_call']['price'], '卖购期权行权价': position['sell_call']['exercise_price'], '卖购期权到期日': position['sell_call']['expiry_date'], '合约数量': position['contract_size'], 'ETF价格': etf_price, '买购期权收盘价': buy_call_close_price, '卖购期权收盘价': sell_call_close_price, '开仓日期': position['open_date'], '开仓ETF价格': position['etf_price'], '买购期权盈亏': buy_call_pnl, '卖购期权盈亏': sell_call_pnl, '总盈亏': total_pnl, '平仓原因': reason, '单张最大盈利': '', # 平仓时不需要,保持字段一致性 '单张最小盈利': '', # 平仓时不需要,保持字段一致性 '总最大盈利': '', # 平仓时不需要,保持字段一致性 '总最小盈利': '' # 平仓时不需要,保持字段一致性 } self.trade_records.append(trade_record) # 保存交易记录到CSV self.save_transaction_to_csv(trade_record) except Exception as e: print(f"平仓时出错: {e}") position['status'] = 'error' def should_add_position(self, current_date, etf_price): """判断是否应该加仓""" # 检查是否有主仓位 main_positions = [p for p in self.positions if p['position_type'] == 'main' and p['status'] == 'open'] if not main_positions: return False # 获取最新主仓位 latest_main_position = main_positions[-1] # 检查加仓次数是否超限 add_positions = [p for p in self.positions if p['position_type'] == 'add' and p['status'] == 'open'] if len(add_positions) >= self.config['max_add_positions']: return False # 检查是否触发加仓条件 trigger_price = latest_main_position['add_position_trigger_price'] if trigger_price and etf_price <= trigger_price: return True return False def save_transaction_to_csv(self, transaction_data): """保存交易记录到CSV文件""" try: # 数据验证 - 确保必需字段存在 required_fields = ['交易日期', '交易类型', '仓位类型', 'ETF标的', '合约数量', 'ETF价格'] for field in required_fields: if field not in transaction_data or transaction_data[field] is None: print(f"警告: 交易记录缺少必需字段 {field},跳过保存") return # 数据验证 - 确保数据类型正确 if not isinstance(transaction_data.get('合约数量'), (int, float)) or transaction_data.get('合约数量') <= 0: print(f"警告: 合约数量无效 {transaction_data.get('合约数量')},跳过保存") return if not isinstance(transaction_data.get('ETF价格'), (int, float)) or transaction_data.get('ETF价格') <= 0: print(f"警告: ETF价格无效 {transaction_data.get('ETF价格')},跳过保存") return # 复制数据并标准化格式 data_copy = transaction_data.copy() # 定义完整的字段顺序,确保开仓和平仓记录字段一致 standard_fields = [ '交易日期', '交易类型', '仓位类型', '策略类型', 'ETF标的', # 新增策略类型字段 '买购期权价格', '买购期权行权价', '买购期权到期日', '卖购期权价格', '卖购期权行权价', '卖购期权到期日', '合约数量', 'ETF价格', '单张最大盈利', '单张最小盈利', '总最大盈利', '总最小盈利', '买购期权收盘价', '卖购期权收盘价', '开仓日期', '开仓ETF价格', '买购期权盈亏', '卖购期权盈亏', '总盈亏', '平仓原因' ] # 确保所有字段都存在,缺失的用空字符串填充 standardized_data = {} for field in standard_fields: standardized_data[field] = data_copy.get(field, '') # 转换日期字段为YYYY-MM-DD格式 date_fields = ['交易日期', '买购期权到期日', '卖购期权到期日', '开仓日期'] for field in date_fields: if standardized_data[field] and standardized_data[field] != '': try: if hasattr(standardized_data[field], 'strftime'): standardized_data[field] = standardized_data[field].strftime('%Y-%m-%d') elif hasattr(standardized_data[field], 'date'): standardized_data[field] = standardized_data[field].date().strftime('%Y-%m-%d') else: # 如果是字符串,尝试解析后转换 date_obj = pd.to_datetime(standardized_data[field]) standardized_data[field] = date_obj.strftime('%Y-%m-%d') except: print(f"警告: 无法转换日期字段 {field}: {standardized_data[field]}") pass # 保持原值 # 检查文件是否存在 file_exists = os.path.exists(self.transaction_csv_path) # 转换为DataFrame,保持字段顺序 df = pd.DataFrame([standardized_data], columns=standard_fields) # 保存到CSV if file_exists: df.to_csv(self.transaction_csv_path, mode='a', header=False, index=False, encoding='utf-8-sig') else: df.to_csv(self.transaction_csv_path, mode='w', header=True, index=False, encoding='utf-8-sig') except Exception as e: print(f"保存交易记录到CSV时出错: {e}") print(f"问题数据: {transaction_data}") def save_daily_position_to_csv(self, position_data): """保存每日持仓记录到CSV文件""" try: # 复制数据并标准化日期格式 data_copy = position_data.copy() # 转换日期字段为YYYY-MM-DD格式(使用中文字段名) if '交易日期' in data_copy and data_copy['交易日期'] is not None: if hasattr(data_copy['交易日期'], 'strftime'): data_copy['交易日期'] = data_copy['交易日期'].strftime('%Y-%m-%d') elif hasattr(data_copy['交易日期'], 'date'): data_copy['交易日期'] = data_copy['交易日期'].date().strftime('%Y-%m-%d') else: # 如果是字符串,尝试解析后转换 try: date_obj = pd.to_datetime(data_copy['交易日期']) data_copy['交易日期'] = date_obj.strftime('%Y-%m-%d') except: pass # 保持原值 # 处理持仓详情字段 - 将列表转换为字符串 if '持仓详情' in data_copy and isinstance(data_copy['持仓详情'], list): if data_copy['持仓详情']: # 如果列表不为空 detail_strings = [] for detail in data_copy['持仓详情']: detail_str = f"{detail['期权类别']}:{detail['持仓标的代码']}@{detail['行权价格']:.2f}×{detail['合约数量']}(盈亏{detail['盈亏金额']:.2f})" detail_strings.append(detail_str) data_copy['持仓详情'] = '; '.join(detail_strings) else: data_copy['持仓详情'] = '无持仓' # 添加到每日持仓列表 self.daily_positions.append(data_copy) # 创建DataFrame,排除列表类型的复杂字段 csv_data = {k: v for k, v in data_copy.items() if not isinstance(v, list)} df = pd.DataFrame([csv_data]) # 检查文件是否存在 file_exists = os.path.exists(self.position_csv_path) # 保存到CSV if file_exists: df.to_csv(self.position_csv_path, mode='a', header=False, index=False, encoding='utf-8-sig') else: df.to_csv(self.position_csv_path, mode='w', header=True, index=False, encoding='utf-8-sig') except Exception as e: print(f"保存持仓记录到CSV时出错: {e}") print(f"问题数据: {position_data}") def record_daily_positions(self, trade_date, etf_price): """记录每日持仓状况""" # 获取当前所有开仓状态的持仓 open_positions = [p for p in self.positions if p['status'] == 'open'] if not open_positions: # 如果没有持仓,记录一条空仓记录 position_record = { '交易日期': trade_date, 'ETF价格': etf_price, '总仓位数': 0, '主仓位数': 0, '加仓仓位数': 0, '总合约数': 0, '总组合盈亏': 0, '总卖购盈亏': 0, '总买购盈亏': 0, '持仓详情': [] } self.save_daily_position_to_csv(position_record) return # 统计持仓信息 main_positions = [p for p in open_positions if p['position_type'] == 'main'] add_positions = [p for p in open_positions if p['position_type'] == 'add'] total_contracts = sum(p['contract_size'] for p in open_positions) # 记录详细持仓信息 position_details = [] total_combo_pnl = 0 total_sell_call_pnl = 0 total_buy_call_pnl = 0 for i, pos in enumerate(open_positions): # 获取策略类型,兼容旧版本数据 strategy_type = pos.get('strategy_type', StrategyType.BULL_SPREAD) # 获取当前期权价值(尽量获取,失败则使用开仓价格) try: query_date = trade_date.date() if hasattr(trade_date, 'date') else trade_date # 获取卖购期权当前价格(两种策略都需要) q_sell_price = query(opt.OPT_DAILY_PRICE.close).filter( opt.OPT_DAILY_PRICE.code == pos['sell_call']['code'], opt.OPT_DAILY_PRICE.date == query_date ) sell_price_result = opt.run_query(q_sell_price) if sell_price_result.empty: raise Exception("无法获取卖购期权价格数据") sell_call_current_price = sell_price_result['close'].iloc[0] # 计算卖购期权盈亏 sell_call_pnl = (pos['sell_call']['price'] - sell_call_current_price) * pos['contract_size'] * 10000 # 两种策略都有买购期权,需要计算买购期权盈亏 q_buy_price = query(opt.OPT_DAILY_PRICE.close).filter( opt.OPT_DAILY_PRICE.code == pos['buy_call']['code'], opt.OPT_DAILY_PRICE.date == query_date ) buy_price_result = opt.run_query(q_buy_price) if buy_price_result.empty: raise Exception("无法获取买购期权价格数据") buy_call_current_price = buy_price_result['close'].iloc[0] buy_call_pnl = (buy_call_current_price - pos['buy_call']['price']) * pos['contract_size'] * 10000 combo_pnl = buy_call_pnl + sell_call_pnl except: # 两种策略都有买购期权,异常处理相同 buy_call_current_price = pos['buy_call']['price'] sell_call_current_price = pos['sell_call']['price'] buy_call_pnl = 0 sell_call_pnl = 0 combo_pnl = 0 # 累计总盈亏 total_combo_pnl += combo_pnl total_sell_call_pnl += sell_call_pnl total_buy_call_pnl += buy_call_pnl # 牛差策略:记录深度实值买购和卖购期权 buy_call_detail = { '持仓标的代码': pos['buy_call']['code'], '期权类别': '买购(牛差)', '合约数量': pos['contract_size'], '行权价格': pos['buy_call']['exercise_price'], '成本价格': pos['buy_call']['price'], '当前价格': buy_call_current_price, '盈亏金额': buy_call_pnl, '仓位类型': pos['position_type'], '策略类型': '牛差组合', '开仓日期': pos['open_date'] } sell_call_detail = { '持仓标的代码': pos['sell_call']['code'], '期权类别': '卖购(牛差)', '合约数量': pos['contract_size'], '行权价格': pos['sell_call']['exercise_price'], '成本价格': pos['sell_call']['price'], '当前价格': sell_call_current_price, '盈亏金额': sell_call_pnl, '仓位类型': pos['position_type'], '策略类型': '牛差组合', '开仓日期': pos['open_date'] } position_details.extend([buy_call_detail, sell_call_detail]) # 记录每日持仓汇总 position_record = { '交易日期': trade_date, 'ETF价格': etf_price, '总仓位数': len(open_positions), '主仓位数': len(main_positions), '加仓仓位数': len(add_positions), '总合约数': total_contracts, '总组合盈亏': total_combo_pnl, '总卖购盈亏': total_sell_call_pnl, '总买购盈亏': total_buy_call_pnl, '持仓详情': position_details } self.save_daily_position_to_csv(position_record) # 注释掉单独的账户管理器回调,改为在多标的管理器中统一处理 # 通知账户管理器更新每日汇总 # if self.account_manager_callback: # try: # self.account_manager_callback(trade_date) # except Exception as e: # print(f"{trade_date.strftime('%Y-%m-%d')} 更新账户汇总回调出错: {e}") def run_strategy(self): """运行策略主逻辑""" print("开始运行深度实值买购和卖购组合的牛差策略...") for i, trade_date in enumerate(self.trade_days.index): # 获取ETF价格 try: price_data = get_price(self.underlying_symbol, trade_date, trade_date, fields=['close'])['close'] # print(f"{trade_date.strftime('%Y-%m-%d')} 获取ETF价格: {price_data.iloc[0]:.4f}") if price_data.empty: print(f"{trade_date.strftime('%Y-%m-%d')} 获取ETF价格失败,因为price_data为空") continue etf_price = price_data.iloc[0] except: print(f"{trade_date.strftime('%Y-%m-%d')} 获取ETF价格失败,因为获取{self.underlying_symbol}价格失败") continue # 记录每日持仓状况 self.record_daily_positions(trade_date, etf_price) # 标记是否有交易发生 has_trading = False # 检查是否需要平仓 if len(self.positions) > 0: for position in self.positions: should_close, reason = self.should_close_position(position, trade_date, etf_price) # print(f"{trade_date.strftime('%Y-%m-%d')} 检查是否需要平仓: {should_close}, 平仓原因: {reason}") if should_close: self.close_position(position, trade_date, etf_price, reason) print(f"{trade_date.strftime('%Y-%m-%d')} 平仓: {reason}, ETF价格: {etf_price:.4f}") has_trading = True # 检查是否需要开新仓(首次开仓或平仓后重新开仓) open_positions = [p for p in self.positions if p['status'] == 'open'] if not open_positions: new_position = self.open_position(trade_date, etf_price, 'main') # 使用新的统一开仓方法 if new_position: max_profit = new_position['profit_info']['total_max_profit'] contract_size = new_position['contract_size'] # 牛差策略输出 strategy_desc = f"牛差组合: 深度实值买购{new_position['buy_call']['exercise_price']:.2f}@{new_position['buy_call']['price']:.4f}, 卖购{new_position['sell_call']['exercise_price']:.2f}@{new_position['sell_call']['price']:.4f}" profit_desc = f"最大牛差收益: {max_profit:.2f}元" # 获取资金信息(如果有的话) if hasattr(self, 'config') and 'allocated_capital' in self.config: allocated_capital = self.config.get('allocated_capital', 0) estimated_margin = contract_size * 1000 # 每张约1000元保证金(粗略估算) print(f"{trade_date.strftime('%Y-%m-%d')} 开仓主仓位: {strategy_desc}, ETF价格: {etf_price:.4f}, 合约数量: {contract_size}张, {profit_desc}, 可用资金: {allocated_capital:.0f}元, 预估保证金: {estimated_margin:.0f}元") else: print(f"{trade_date.strftime('%Y-%m-%d')} 开仓主仓位: {strategy_desc}, ETF价格: {etf_price:.4f}, 合约数量: {contract_size}张, {profit_desc}") has_trading = True # 检查是否需要加仓 elif self.should_add_position(trade_date, etf_price): add_position = self.open_position(trade_date, etf_price, 'add', silent=False) # 使用新的统一开仓方法 if add_position: max_profit = add_position['profit_info']['total_max_profit'] contract_size = add_position['contract_size'] # 牛差策略输出 strategy_desc = f"牛差组合: 深度实值买购{add_position['buy_call']['exercise_price']:.2f}@{add_position['buy_call']['price']:.4f}, 卖购{add_position['sell_call']['exercise_price']:.2f}@{add_position['sell_call']['price']:.4f}" profit_desc = f"最大牛差收益: {max_profit:.2f}元" # 获取资金信息(如果有的话) if hasattr(self, 'config') and 'allocated_capital' in self.config: allocated_capital = self.config.get('allocated_capital', 0) estimated_margin = contract_size * 1000 # 每张约1000元保证金(粗略估算) print(f"{trade_date.strftime('%Y-%m-%d')} 加仓: {strategy_desc}, ETF价格: {etf_price:.4f}, 合约数量: {contract_size}张, {profit_desc}, 可用资金: {allocated_capital:.0f}元, 预估保证金: {estimated_margin:.0f}元") else: print(f"{trade_date.strftime('%Y-%m-%d')} 加仓: {strategy_desc}, ETF价格: {etf_price:.4f}, 合约数量: {contract_size}张, {profit_desc}") has_trading = True # 更新前一日ETF价格,用于下一天计算涨幅 self.previous_etf_price = etf_price print("策略运行完成!") def get_performance_summary(self): """获取策略表现总结""" if not self.trade_records: return "没有交易记录" closed_positions = [p for p in self.positions if p['status'] == 'closed'] if not closed_positions: return "没有已平仓的交易" total_pnl = sum(p['pnl'] for p in closed_positions) winning_trades = len([p for p in closed_positions if p['pnl'] > 0]) total_trades = len(closed_positions) win_rate = winning_trades / total_trades if total_trades > 0 else 0 summary = f""" 策略表现总结: ============= 总交易次数: {total_trades} 获利交易: {winning_trades} 胜率: {win_rate:.2%} 总盈亏: {total_pnl:.2f}元 平均每笔盈亏: {total_pnl/total_trades:.2f}元 """ return summary def plot_results(self): """绘制策略结果""" if not self.daily_positions: print("没有持仓数据可以绘制") return # 使用每日持仓记录绘制盈亏曲线 position_df = pd.DataFrame(self.daily_positions) # 过滤有持仓的记录(排除空仓记录,但保留盈亏为0的记录用于显示完整曲线) position_data = position_df.copy() if position_data.empty: print("没有持仓数据可以绘制") return # 确保交易日期是datetime格式 position_data['交易日期'] = pd.to_datetime(position_data['交易日期']) position_data = position_data.sort_values('交易日期') # 确保盈亏字段为数值类型 position_data['总组合盈亏'] = pd.to_numeric(position_data['总组合盈亏'], errors='coerce').fillna(0) position_data['总卖购盈亏'] = pd.to_numeric(position_data['总卖购盈亏'], errors='coerce').fillna(0) # 绘图 fig, ax = plt.subplots(1, 1, figsize=(12, 8)) # 绘制两条盈亏曲线 ax.plot(position_data['交易日期'], position_data['总组合盈亏'], label='每日组合浮动盈亏(买购+卖购)', color='blue', linewidth=2) ax.plot(position_data['交易日期'], position_data['总卖购盈亏'], label='每日卖购浮动盈亏', color='red', linewidth=2, linestyle='--') # 添加零线 ax.axhline(y=0, color='black', linestyle='-', alpha=0.3) ax.set_title(f'{self.get_underlying_code()}策略每日浮动盈亏对比', fontsize=14) ax.set_ylabel('浮动盈亏 (元)', fontsize=12) ax.set_xlabel('日期', fontsize=12) ax.legend(fontsize=10) ax.grid(True, alpha=0.3) # 格式化日期显示 import matplotlib.dates as mdates ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) ax.xaxis.set_major_locator(mdates.MonthLocator()) plt.xticks(rotation=45) # 添加数据标注 if len(position_data) > 0: final_combo_pnl = position_data['总组合盈亏'].iloc[-1] final_sell_pnl = position_data['总卖购盈亏'].iloc[-1] max_combo_pnl = position_data['总组合盈亏'].max() min_combo_pnl = position_data['总组合盈亏'].min() ax.text(0.02, 0.98, f'当前组合浮盈: {final_combo_pnl:.2f}元\n' f'当前卖购浮盈: {final_sell_pnl:.2f}元\n' f'最大组合浮盈: {max_combo_pnl:.2f}元\n' f'最大组合浮亏: {min_combo_pnl:.2f}元', transform=ax.transAxes, fontsize=10, verticalalignment='top', bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.8)) plt.tight_layout() plt.show() # 策略配置类 class StrategyConfig: """策略配置管理""" def __init__(self): # ETF标的配置字典 self.etf_symbols = { '50ETF': '510050.XSHG', # 上证50ETF '300ETF': '510300.XSHG', # 沪深300ETF '创业板ETF': '159915.XSHE' # 创业板ETF } # 时间范围配置 self.time_config = { 'start_date': '2024-06-01', 'end_date': '2024-08-31' } # 资金配置 self.capital_config = { 'total_capital': 1000000, # 总资金额度(100万) 'capital_allocation': { # 不同标的资金分配比例 '50ETF': 0.3, # 50ETF 30% '300ETF': 0.5, # 300ETF 50% '创业板ETF': 0.2 # 创业板ETF 20% }, 'capital_usage_limit': 0.8, # 资金使用上限80% 'bull_spread_margin_discount': 30, # 牛差组合策略保证金优惠(每单位组合加收30元) 'contract_unit': 10000, # 合约单位(1张期权代表10000份标的) 'margin_params': { # 保证金计算参数 'volatility_factor': 0.12, # 波动率因子12% 'min_margin_factor': 0.07 # 最小保证金因子7% } } def get_allocated_capital(self, etf_code): """获取指定ETF的分配资金""" total_usable = self.capital_config['total_capital'] * self.capital_config['capital_usage_limit'] # 获取实际存在的ETF列表 available_etfs = list(self.etf_symbols.keys()) # 计算实际存在ETF的原始比例总和 original_allocation = self.capital_config['capital_allocation'] available_ratio_sum = sum(original_allocation.get(etf, 0) for etf in available_etfs) if available_ratio_sum == 0: print(f"警告: 无可用ETF或比例配置错误,{etf_code}分配资金为0") return 0 # 获取当前ETF的原始比例 original_ratio = original_allocation.get(etf_code, 0) if original_ratio == 0: print(f"警告: {etf_code}未在capital_allocation中配置,分配资金为0") return 0 # 重新调整比例:当前ETF比例 / 实际存在ETF的比例总和 adjusted_ratio = original_ratio / available_ratio_sum allocated_capital = total_usable * adjusted_ratio print(f"资金分配调整 - {etf_code}: 原始比例{original_ratio:.1%}, 调整后比例{adjusted_ratio:.1%}, 分配资金{allocated_capital:,.0f}元") return allocated_capital def calculate_option_margin(self, option_type, settlement_price, underlying_price, strike_price): """ 计算单张期权的保证金 :param option_type: 'call' 或 'put' :param settlement_price: 合约前结算价 :param underlying_price: 标的证券前收盘价 :param strike_price: 行权价 :return: 单张期权保证金 """ contract_unit = self.capital_config['contract_unit'] volatility_factor = self.capital_config['margin_params']['volatility_factor'] min_margin_factor = self.capital_config['margin_params']['min_margin_factor'] if option_type == 'call': # 认购期权虚值 = max(行权价 - 标的价格, 0) out_of_money = max(strike_price - underlying_price, 0) margin = (settlement_price + max( volatility_factor * underlying_price - out_of_money, min_margin_factor * underlying_price )) * contract_unit elif option_type == 'put': # 认沽期权虚值 = max(标的价格 - 行权价, 0) out_of_money = max(underlying_price - strike_price, 0) margin = min( settlement_price + max( volatility_factor * underlying_price - out_of_money, min_margin_factor * strike_price ), strike_price ) * contract_unit else: raise ValueError("option_type must be 'call' or 'put'") return margin def calculate_bull_spread_margin(self, buy_call_info, sell_call_info, underlying_price): """ 计算牛差组合的保证金 :param buy_call_info: 买入认购期权信息 :param sell_call_info: 卖出认购期权信息 :param underlying_price: 标的价格 :return: 牛差组合保证金 """ # 计算行权价差 strike_diff = sell_call_info['exercise_price'] - buy_call_info['exercise_price'] contract_unit = self.capital_config['contract_unit'] margin_discount = self.capital_config['bull_spread_margin_discount'] # 判断组合类型 if strike_diff > 0: # 传统牛差组合(买购行权价 < 卖购行权价) # 保证金 = 行权价差 * 合约单位 + 保证金优惠 bull_spread_margin = strike_diff * contract_unit + margin_discount else: # 其他情况的保证金计算 # 使用净权利金作为保证金基础 net_premium = buy_call_info['price'] - sell_call_info['price'] if net_premium > 0: # 需要支付净权利金 bull_spread_margin = abs(net_premium) * contract_unit + margin_discount else: # 收取净权利金,使用估算保证金 estimated_margin = max(sell_call_info['price'] * contract_unit * 0.1, 1000) # 最少1000元保证金 bull_spread_margin = estimated_margin return bull_spread_margin def calculate_contract_size(self, etf_code, etf_price, buy_call_info=None, sell_call_info=None): """ 计算可开仓的合约数量 :param etf_code: ETF代码 :param etf_price: ETF价格 :param buy_call_info: 买入认购期权信息(可选,用于牛差组合计算) :param sell_call_info: 卖出认购期权信息(可选,用于牛差组合计算) """ allocated_capital = self.get_allocated_capital(etf_code) if buy_call_info and sell_call_info: # 牛差组合保证金计算 margin_per_contract = self.calculate_bull_spread_margin(buy_call_info, sell_call_info, etf_price) else: # 单一期权保证金估算(使用卖出认购期权) estimated_settlement_price = etf_price * 0.02 # 估算权利金为标的价格的2% estimated_strike_price = etf_price * 1.05 # 估算行权价为标的价格的105% margin_per_contract = self.calculate_option_margin('call', estimated_settlement_price, etf_price, estimated_strike_price) # 边界条件检查 if allocated_capital <= 0: print(f"警告: {etf_code} 分配资金无效({allocated_capital}),返回默认合约数量30张") return 30 if margin_per_contract <= 0: print(f"警告: {etf_code} 保证金计算结果无效({margin_per_contract}),返回默认合约数量30张") return 30 max_contracts = int(allocated_capital / margin_per_contract) # 确保结果为正数 if max_contracts <= 0: print(f"警告: {etf_code} 合约数量计算结果无效({max_contracts}),返回默认合约数量30张") return 30 return min(max_contracts, 100) # 限制最大100张 # 多标的策略管理器 class MultiUnderlyingBullSpreadManager: """多标的牛差策略管理器""" def __init__(self, config: StrategyConfig): self.config = config self.strategies = {} self.daily_account_records = [] # 每日账户资金记录 self.account_csv_path = 'account_summary.csv' self.cumulative_realized_pnl = 0 # 累积已实现盈亏 self.previous_date_summary = None # 前一天的账户汇总记录 self.initialize_strategies() def initialize_strategies(self): """初始化各个标的的策略""" for etf_code, symbol in self.config.etf_symbols.items(): allocated_capital = self.config.get_allocated_capital(etf_code) if allocated_capital > 0: strategy = DeepITMBullSpreadStrategy( underlying_symbol=symbol, start_date=self.config.time_config['start_date'], end_date=self.config.time_config['end_date'] ) # 动态调整策略参数 strategy.config['allocated_capital'] = allocated_capital strategy.config['etf_code'] = etf_code # 设置账户管理器回调 strategy.account_manager_callback = self.record_daily_account_summary self.strategies[etf_code] = strategy print(f"初始化{etf_code}策略,分配资金: {allocated_capital:,.0f}元") def calculate_dynamic_contract_size(self, strategy, etf_price, buy_call_info=None, sell_call_info=None): """动态计算合约数量""" etf_code = strategy.config['etf_code'] return self.config.calculate_contract_size(etf_code, etf_price, buy_call_info, sell_call_info) def calculate_used_capital(self, strategy): """计算策略已使用的资金 - 支持两种策略类型""" used_capital = 0 open_positions = [p for p in strategy.positions if p['status'] == 'open'] for position in open_positions: # 获取策略类型,兼容旧版本数据 strategy_type = position.get('strategy_type', StrategyType.BULL_SPREAD) # 两种策略都有买购期权,资金使用计算相同 # 资金使用 = (买购权利金 - 卖购权利金) * 合约数量 * 10000 net_premium = position['buy_call']['price'] - position['sell_call']['price'] position_capital = net_premium * position['contract_size'] * 10000 used_capital += position_capital return used_capital def record_daily_account_summary(self, trade_date): """记录每日账户资金汇总""" initial_capital = self.config.capital_config['total_capital'] total_used_capital = 0 total_floating_pnl = 0 total_current_market_value = 0 # 所有策略的当前市值总和 strategy_details = {} # 计算当天的已实现盈亏(通过检查平仓交易) today_realized_pnl = 0 for etf_code, strategy in self.strategies.items(): # 检查当天是否有平仓交易 for trade_record in strategy.trade_records: if (trade_record.get('交易类型') == '平仓' and trade_record.get('交易日期') and trade_record.get('总盈亏') is not None): trade_date_record = trade_record.get('交易日期') if hasattr(trade_date_record, 'date'): trade_date_record = trade_date_record.date() elif isinstance(trade_date_record, str): try: trade_date_record = pd.to_datetime(trade_date_record).date() except: continue target_date = trade_date.date() if hasattr(trade_date, 'date') else trade_date if trade_date_record == target_date: today_realized_pnl += float(trade_record.get('总盈亏', 0)) # 更新累积已实现盈亏 self.cumulative_realized_pnl += today_realized_pnl # 汇总各策略的资金使用和浮动盈亏 total_bull_spread_positions = 0 for etf_code, strategy in self.strategies.items(): used_capital = self.calculate_used_capital(strategy) open_positions = [p for p in strategy.positions if p['status'] == 'open'] open_positions_count = len(open_positions) # 统计牛差策略仓位数量 bull_spread_count = len([p for p in open_positions if p.get('strategy_type', StrategyType.BULL_SPREAD) == StrategyType.BULL_SPREAD]) total_bull_spread_positions += bull_spread_count # 计算组合当前市值和浮动盈亏 current_market_value = 0 floating_pnl = 0 if strategy.daily_positions: # 查找指定日期的持仓记录 target_record = None for position_record in strategy.daily_positions: record_date = position_record.get('交易日期') if hasattr(record_date, 'date'): record_date = record_date.date() elif isinstance(record_date, str): try: record_date = pd.to_datetime(record_date).date() except: continue target_date = trade_date.date() if hasattr(trade_date, 'date') else trade_date if record_date == target_date: target_record = position_record break # 如果找到了对应日期的记录,计算当前市值和浮动盈亏 if target_record: floating_pnl = target_record.get('总组合盈亏', 0) if isinstance(floating_pnl, str): try: floating_pnl = float(floating_pnl) except: floating_pnl = 0 # 计算组合当前市值 = 初始投入成本 + 浮动盈亏 current_market_value = used_capital + floating_pnl total_used_capital += used_capital total_floating_pnl += floating_pnl total_current_market_value += current_market_value strategy_details[etf_code] = { '分配资金': strategy.config.get('allocated_capital', 0), '初始投入': used_capital, '当前市值': current_market_value, '浮动盈亏': floating_pnl, '持仓数量': open_positions_count, '牛差策略数量': bull_spread_count } # 修正后的计算逻辑: # 当前总资金 = 初始资金 + 累积已实现盈亏 current_total_capital = initial_capital + self.cumulative_realized_pnl # 剩余现金 = 当前总资金 - 投入资金 remaining_cash = current_total_capital - total_used_capital # 账户总价值 = 剩余现金 + 组合当前市值 total_account_value = remaining_cash + total_current_market_value # 记录账户汇总 account_record = { '交易日期': trade_date, '总资金': current_total_capital, # 使用当前总资金而非初始资金 '初始投入总额': total_used_capital, '剩余现金': remaining_cash, '组合当前市值': total_current_market_value, '总浮动盈亏': total_floating_pnl, '账户总价值': total_account_value, '累积已实现盈亏': self.cumulative_realized_pnl, # 新增字段 '当日已实现盈亏': today_realized_pnl, # 新增字段 '资金使用率': total_used_capital / current_total_capital if current_total_capital > 0 else 0, '收益率': (total_account_value - initial_capital) / initial_capital if initial_capital > 0 else 0, # 修正收益率计算 '牛差策略总数': total_bull_spread_positions, # 新增字段 '策略详情': strategy_details } self.daily_account_records.append(account_record) self.save_account_summary_to_csv(account_record) # 更新前一天的记录 self.previous_date_summary = account_record # 输出整体账户汇总(只在有活动时输出) # if total_used_capital > 0 or total_floating_pnl != 0: # print(f"{trade_date.strftime('%Y-%m-%d')} 【账户汇总】总资金{total_capital:.0f}元|已投入{total_used_capital:.0f}元|剩余现金{remaining_cash:.0f}元|组合市值{total_current_market_value:.0f}元|账户总值{total_account_value:.0f}元|总收益{total_floating_pnl:.0f}元|收益率{(total_floating_pnl/total_capital)*100:.2f}%") def save_account_summary_to_csv(self, account_data): """保存账户汇总到CSV文件""" try: # 复制数据并处理日期格式 data_copy = account_data.copy() # 转换日期字段 if '交易日期' in data_copy and data_copy['交易日期'] is not None: if hasattr(data_copy['交易日期'], 'strftime'): data_copy['交易日期'] = data_copy['交易日期'].strftime('%Y-%m-%d') elif hasattr(data_copy['交易日期'], 'date'): data_copy['交易日期'] = data_copy['交易日期'].date().strftime('%Y-%m-%d') else: try: date_obj = pd.to_datetime(data_copy['交易日期']) data_copy['交易日期'] = date_obj.strftime('%Y-%m-%d') except: pass # 处理策略详情字段 if '策略详情' in data_copy and isinstance(data_copy['策略详情'], dict): strategy_strings = [] for etf_code, details in data_copy['策略详情'].items(): bull_count = details.get('牛差策略数量', 0) strategy_str = f"{etf_code}(分配{details['分配资金']:.0f}|投入{details['初始投入']:.0f}|市值{details['当前市值']:.0f}|浮盈{details['浮动盈亏']:.0f}|持仓{details['持仓数量']}|牛差{bull_count})" strategy_strings.append(strategy_str) data_copy['策略详情'] = '; '.join(strategy_strings) # 创建DataFrame,排除复杂字段 csv_data = {k: v for k, v in data_copy.items() if not isinstance(v, dict)} df = pd.DataFrame([csv_data]) # 检查文件是否存在 file_exists = os.path.exists(self.account_csv_path) # 保存到CSV if file_exists: df.to_csv(self.account_csv_path, mode='a', header=False, index=False, encoding='utf-8-sig') else: df.to_csv(self.account_csv_path, mode='w', header=True, index=False, encoding='utf-8-sig') except Exception as e: print(f"保存账户汇总到CSV时出错: {e}") print(f"问题数据: {account_data}") def plot_account_summary(self): """绘制整体账户资金曲线""" if not self.daily_account_records: print("没有账户数据可以绘制") return # 转换为DataFrame account_df = pd.DataFrame(self.daily_account_records) if account_df.empty: print("没有账户数据可以绘制") return # print(f"账户数据记录数量: {len(account_df)}") # print(f"账户数据列: {account_df.columns.tolist()}") # print(f"前几行数据:\n{account_df.head()}") # 确保日期格式正确 account_df['交易日期'] = pd.to_datetime(account_df['交易日期'], errors='coerce') account_df = account_df.dropna(subset=['交易日期']).sort_values('交易日期') if account_df.empty: print("日期转换后没有有效数据") return # 确保数值字段为数值类型,处理可能的字符串或其他类型 numeric_columns = ['总资金', '初始投入总额', '剩余现金', '组合当前市值', '总浮动盈亏', '账户总价值', '资金使用率', '收益率', '牛差策略总数'] for col in numeric_columns: if col in account_df.columns: # 先转换为字符串,移除可能的非数字字符 account_df[col] = account_df[col].astype(str).str.replace('[^\d.-]', '', regex=True) # 再转换为数值类型 account_df[col] = pd.to_numeric(account_df[col], errors='coerce').fillna(0) print(f"列 {col} 数据范围: {account_df[col].min()} 到 {account_df[col].max()}") # 检查是否有有效的数值数据 if account_df[['总资金', '账户总价值']].isna().all().all(): print("所有数值数据都无效,无法绘图") return # 绘图 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 10)) try: # 上图:账户总价值曲线 # 转换为numpy数组以确保数据类型 dates = account_df['交易日期'].values total_values = account_df['账户总价值'].values.astype(float) initial_capitals = account_df['总资金'].values.astype(float) ax1.plot(dates, total_values, label='账户总价值', color='green', linewidth=2) ax1.plot(dates, initial_capitals, label='初始资金', color='gray', linewidth=1, linestyle='--') # 填充区域(只有在数据有效时) if len(total_values) > 0 and len(initial_capitals) > 0: profit_mask = total_values >= initial_capitals loss_mask = total_values < initial_capitals if profit_mask.any(): ax1.fill_between(dates, initial_capitals, total_values, where=profit_mask, color='green', alpha=0.3, label='盈利区域') if loss_mask.any(): ax1.fill_between(dates, initial_capitals, total_values, where=loss_mask, color='red', alpha=0.3, label='亏损区域') ax1.set_title('整体账户资金曲线', fontsize=14) ax1.set_ylabel('资金 (元)', fontsize=12) ax1.legend(fontsize=10) ax1.grid(True, alpha=0.3) # 下图:资金构成 remaining_cash = account_df['剩余现金'].values.astype(float) current_market_value = account_df['组合当前市值'].values.astype(float) ax2.plot(dates, remaining_cash, label='剩余现金', color='blue', linewidth=2) ax2.plot(dates, current_market_value, label='组合当前市值', color='orange', linewidth=2, linestyle='--') ax2.axhline(y=0, color='black', linestyle='-', alpha=0.3) ax2.set_title('资金构成分析', fontsize=14) ax2.set_ylabel('金额 (元)', fontsize=12) ax2.set_xlabel('日期', fontsize=12) ax2.legend(fontsize=10) ax2.grid(True, alpha=0.3) # 格式化日期显示 import matplotlib.dates as mdates for ax in [ax1, ax2]: ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) ax.xaxis.set_major_locator(mdates.MonthLocator()) plt.xticks(rotation=45) # 添加数据标注 if len(total_values) > 0: final_value = float(total_values[-1]) initial_capital = float(initial_capitals[0]) total_return = final_value - initial_capital return_rate = total_return / initial_capital if initial_capital > 0 else 0 max_value = float(np.max(total_values)) min_value = float(np.min(total_values)) # 获取最新的策略类型统计 final_bull_count = account_df['牛差策略总数'].iloc[-1] if '牛差策略总数' in account_df.columns else 0 ax1.text(0.02, 0.98, f'当前账户价值: {final_value:,.0f}元\n' f'总收益: {total_return:,.0f}元\n' f'收益率: {return_rate:.2%}\n' f'最高价值: {max_value:,.0f}元\n' f'最低价值: {min_value:,.0f}元\n' f'当前持仓:牛差{final_bull_count}个', transform=ax1.transAxes, fontsize=10, verticalalignment='top', bbox=dict(boxstyle='round', facecolor='lightblue', alpha=0.8)) plt.tight_layout() plt.show() except Exception as e: print(f"绘图过程中出错: {e}") print(f"账户数据样本:\n{account_df[['交易日期', '总资金', '账户总价值', '剩余现金', '组合当前市值', '总浮动盈亏']].head()}") # 尝试简化版本的绘图 try: fig2, ax = plt.subplots(1, 1, figsize=(10, 6)) ax.plot(range(len(account_df)), account_df['账户总价值'].astype(float), label='账户总价值', color='green', linewidth=2) ax.set_title('简化版账户资金曲线') ax.set_ylabel('资金 (元)') ax.set_xlabel('交易日序号') ax.legend() ax.grid(True) plt.show() except Exception as e2: print(f"简化绘图也失败: {e2}") def run_all_strategies(self): """运行所有策略""" print("="*60) print("开始运行多标的深度实值买购和卖购组合的牛差策略") print("="*60) # 获取统一的交易日历(取第一个策略的交易日历作为基准) if not self.strategies: print("没有可运行的策略") return {} first_strategy = list(self.strategies.values())[0] trade_days = first_strategy.trade_days.index # 为每个策略设置动态合约数量计算方法 for etf_code, strategy in self.strategies.items(): original_open_method = strategy.open_position # 使用新的统一开仓方法 def make_dynamic_open_position(strat, orig_method): def dynamic_open_position(trade_date, etf_price, position_type='main', silent=False, save_to_csv=True): # 首先用原方法获取期权信息,但不保存到CSV original_contract_size = strat.config['contract_size'] strat.config['contract_size'] = 1 # 临时设置为1张以获取期权信息 temp_result = orig_method(trade_date, etf_price, position_type, silent=True, save_to_csv=False) if temp_result: # 根据策略类型获取期权信息进行动态计算 strategy_type = temp_result.get('strategy_type', StrategyType.BULL_SPREAD) sell_call_info = temp_result['sell_call'] buy_call_info = temp_result['buy_call'] # 两种策略都有买购期权 # 两种策略都使用买购和卖购期权信息 dynamic_size = self.calculate_dynamic_contract_size(strat, etf_price, buy_call_info, sell_call_info) # 验证动态合约数量,确保为正数 if dynamic_size <= 0: print(f" {strat.config['etf_code']}: 动态合约数量计算结果无效({dynamic_size}),使用默认值30张") dynamic_size = 30 # 使用默认值 # 更新合约数量并重新开仓 strat.config['contract_size'] = dynamic_size strat._validate_contract_size() # 验证合约数量 # 移除临时仓位和交易记录 if strat.positions and strat.positions[-1] == temp_result: strat.positions.pop() if strat.trade_records and len(strat.trade_records) > 0: # 检查最后一条记录是否是刚刚添加的临时记录 last_record = strat.trade_records[-1] if (last_record.get('交易类型') == '开仓' and not last_record.get('平仓原因') and last_record.get('合约数量') == 1): strat.trade_records.pop() # 重新开仓,这次保存到CSV result = orig_method(trade_date, etf_price, position_type, silent, save_to_csv) else: # 第一次调用失败,恢复原始合约数量设置,用传入的silent参数重新调用显示失败详情 strat.config['contract_size'] = original_contract_size result = orig_method(trade_date, etf_price, position_type, silent, save_to_csv) return result # 恢复原始设置 strat.config['contract_size'] = original_contract_size return result return dynamic_open_position strategy.open_position = make_dynamic_open_position(strategy, original_open_method) # 更新方法名 # 按日期统一运行所有策略 print(f"开始按日期统一运行策略,共{len(trade_days)}个交易日") for i, trade_date in enumerate(trade_days): # print(f"\n处理交易日 {trade_date.strftime('%Y-%m-%d')} ({i+1}/{len(trade_days)})") # 为每个策略处理当天的交易 daily_has_activity = False for etf_code, strategy in self.strategies.items(): try: # 获取ETF价格 price_data = get_price(strategy.underlying_symbol, trade_date, trade_date, fields=['close'])['close'] if price_data.empty: print(f" {etf_code}: 获取ETF价格失败") continue etf_price = price_data.iloc[0] # 记录每日持仓状况(但不触发账户汇总回调) strategy.record_daily_positions(trade_date, etf_price) # 检查是否需要平仓 if len(strategy.positions) > 0: for position in strategy.positions: should_close, reason = strategy.should_close_position(position, trade_date, etf_price) if should_close: strategy.close_position(position, trade_date, etf_price, reason) print(f" {etf_code}: 平仓 {reason}, ETF价格: {etf_price:.4f}") daily_has_activity = True # 检查是否需要开新仓(首次开仓或平仓后重新开仓) open_positions = [p for p in strategy.positions if p['status'] == 'open'] if not open_positions: new_position = strategy.open_position(trade_date, etf_price, 'main', silent=False) # 使用新的统一开仓方法 if new_position: max_profit = new_position['profit_info']['total_max_profit'] contract_size = new_position['contract_size'] # 牛差策略输出 strategy_desc = f"牛差组合策略" profit_desc = f"最大牛差收益: {max_profit:.2f}元" print(f" {etf_code}: 开仓主仓位({strategy_desc}),ETF价格: {etf_price:.4f}, 合约数量: {contract_size}张, {profit_desc}") daily_has_activity = True # else: # print(f" {etf_code}: 开仓失败,无法找到合适的期权组合,ETF价格: {etf_price:.4f}") # 检查是否需要加仓 elif strategy.should_add_position(trade_date, etf_price): add_position = strategy.open_position(trade_date, etf_price, 'add', silent=False) # 使用新的统一开仓方法 if add_position: max_profit = add_position['profit_info']['total_max_profit'] contract_size = add_position['contract_size'] # 牛差策略输出 strategy_desc = f"牛差组合策略" profit_desc = f"最大牛差收益: {max_profit:.2f}元" print(f" {etf_code}: 加仓({strategy_desc}),ETF价格: {etf_price:.4f}, 合约数量: {contract_size}张, {profit_desc}") daily_has_activity = True # 更新策略的前一日ETF价格 strategy.previous_etf_price = etf_price except Exception as e: print(f" {etf_code}: 处理失败 - {e}") # 统一记录当天的账户汇总(无论是否有交易活动) try: self.record_daily_account_summary(trade_date) if daily_has_activity: print(f" 账户汇总已更新") except Exception as e: print(f" 记录账户汇总失败: {e}") # 收集所有策略的结果 results = {} for etf_code, strategy in self.strategies.items(): try: results[etf_code] = { 'strategy': strategy, 'summary': strategy.get_performance_summary(), 'allocated_capital': strategy.config['allocated_capital'] } print(f"{etf_code}策略运行完成") except Exception as e: print(f"{etf_code}策略结果收集出错: {e}") results[etf_code] = {'error': str(e)} print("\n所有策略运行完成!") return results def generate_overall_report(self, results): """生成总体报告""" print("\n" + "="*60) print("多标的牛差策略总体报告") print("="*60) total_pnl = 0 total_trades = 0 total_winning_trades = 0 for etf_code, result in results.items(): if 'error' in result: print(f"\n{etf_code}: 策略执行出错 - {result['error']}") continue strategy = result['strategy'] allocated_capital = result['allocated_capital'] print(f"\n{etf_code} 策略结果:") print(f"分配资金: {allocated_capital:,.0f}元") print(result['summary']) # 统计总体数据 closed_positions = [p for p in strategy.positions if p['status'] == 'closed'] if closed_positions: strategy_pnl = sum(p['pnl'] for p in closed_positions) strategy_trades = len(closed_positions) strategy_winning = len([p for p in closed_positions if p['pnl'] > 0]) total_pnl += strategy_pnl total_trades += strategy_trades total_winning_trades += strategy_winning # 总体统计 if total_trades > 0: overall_win_rate = total_winning_trades / total_trades print(f"\n总体策略表现:") print(f"总交易次数: {total_trades}") print(f"总获利交易: {total_winning_trades}") print(f"总体胜率: {overall_win_rate:.2%}") print(f"总盈亏: {total_pnl:.2f}元") print(f"平均每笔盈亏: {total_pnl/total_trades:.2f}元") print(f"总资金收益率: {total_pnl/self.config.capital_config['total_capital']:.2%}") # 使用示例 def run_deep_itm_bull_spread_example(): """运行深度实值买购和卖购组合牛差策略示例""" # 创建策略配置 config = StrategyConfig() # 可以自定义配置 config.time_config = { 'start_date': '2025-06-15', 'end_date': '2025-08-25' } config.capital_config.update({ 'total_capital': 1000000, # 100万总资金 'capital_allocation': { '50ETF': 0.5, # 50ETF 50% '300ETF': 0.3, # 300ETF 30% '创业板ETF': 0.2 # 创业板ETF 20% }, 'capital_usage_limit': 0.8, # 使用80%资金 'bull_spread_margin_discount': 30, # 牛差组合策略保证金优惠(每单位组合加收30元) 'contract_unit': 10000, # 合约单位 'margin_params': { # 保证金计算参数(按交易所规定) 'volatility_factor': 0.12, # 波动率因子12% 'min_margin_factor': 0.07 # 最小保证金因子7% } }) # 创建多标的策略管理器 manager = MultiUnderlyingBullSpreadManager(config) # 运行所有策略 results = manager.run_all_strategies() # 生成报告 manager.generate_overall_report(results) # 绘制整体账户资金曲线 try: print(f"\n绘制整体账户资金曲线...") manager.plot_account_summary() except Exception as e: print(f"绘制整体账户资金曲线时出错: {e}") # 绘制各策略结果(可选) for etf_code, result in results.items(): if 'strategy' in result: try: print(f"\n绘制{etf_code}策略结果...") result['strategy'].plot_results() except Exception as e: print(f"绘制{etf_code}图表时出错: {e}")