08_豆粕备兑认购策略.py 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. # 豆粕-备兑看涨策略
  2. # 参考资料:
  3. # - 原始策略来源: https://www.joinquant.com/view/community/detail/4bf820b677d7d774f54c122460533b2e
  4. # - 研究网址: https://www.joinquant.com/research?target=research&url=/user/75474983526/notebooks/Options/%E8%B1%86%E7%B2%95-%E5%A4%87%E5%85%91%E7%9C%8B%E6%B6%A8%E7%AD%96%E7%95%A5.ipynb
  5. # TODO: 添加豆粕备兑看涨策略相关代码
  6. import jqdata
  7. from jqdata import *
  8. import pandas as pd
  9. import numpy as np
  10. import datetime
  11. import matplotlib.pyplot as plt
  12. plt.rcParams['font.sans-serif']=['SimHei']
  13. plt.rcParams['axes.unicode_minus'] = False
  14. from datetime import datetime, timedelta
  15. def is_last_day_of_month(date_str):
  16. # 将字符串转换为日期对象
  17. date_obj = datetime.strptime(date_str, '%Y-%m-%d')
  18. # 获取下一个日期对象
  19. next_date_obj = date_obj + timedelta(days=1)
  20. # 判断是否为下个月的第一天,如果是,则当前日期为月末
  21. return date_obj.month != next_date_obj.month
  22. def get_last_day_of_month(date_str):
  23. # 将字符串转换为日期对象
  24. date_obj = datetime.strptime(date_str, '%Y-%m-%d')
  25. # 获取下个月的第一天日期对象
  26. next_month_first_day = datetime(date_obj.year, date_obj.month + 1, 1)
  27. # 从下个月的第一天减去一天,得到当前月的月末日期对象
  28. last_day_of_month = next_month_first_day - timedelta(days=1)
  29. # 返回月末日期的字符串形式
  30. return last_day_of_month.strftime('%Y-%m-%d')
  31. # 豆粕合约
  32. SUBJECT_MATTER = 'M2409.XDCE'
  33. info = get_security_info(SUBJECT_MATTER)
  34. starttime = str(info.start_date)
  35. endtime = str(info.end_date)
  36. print(starttime)
  37. print(endtime)
  38. #查询相关的合约,适用于商品
  39. qy = query(opt.OPT_CONTRACT_INFO).filter(
  40. opt.OPT_CONTRACT_INFO.underlying_symbol == SUBJECT_MATTER, ##期权标的物
  41. opt.OPT_CONTRACT_INFO.contract_type == 'CO'
  42. ).order_by(opt.OPT_CONTRACT_INFO.exercise_price)
  43. #合约价差
  44. price_gap = 10
  45. optList = opt.run_query(qy)
  46. optList
  47. #获取交易时间和时间间隔(频率:月)
  48. #根据不同交易日分割月份
  49. #指定回测的起始时间
  50. trade_days = pd.Series(index=jqdata.get_trade_days(starttime,endtime))
  51. trade_days.index = pd.to_datetime(trade_days.index)
  52. last_day = get_last_day_of_month(endtime)
  53. month_split = list(trade_days.resample('M',label='left').mean().index) + [pd.to_datetime(last_day)]
  54. month_split
  55. ##持仓情况
  56. holding_contract2 = pd.Series(index=trade_days.index)
  57. #获取首个持仓合约
  58. q_contract_info = query(opt.OPT_CONTRACT_INFO.code,
  59. opt.OPT_CONTRACT_INFO.trading_code,
  60. opt.OPT_CONTRACT_INFO.name, #合约代码,合约交易代码,合约简称
  61. opt.OPT_CONTRACT_INFO.exercise_price, opt.OPT_CONTRACT_INFO.last_trade_date,
  62. opt.OPT_CONTRACT_INFO.list_date
  63. ).filter(opt.OPT_CONTRACT_INFO.underlying_symbol == SUBJECT_MATTER,
  64. opt.OPT_CONTRACT_INFO.contract_type == 'CO')
  65. contract_info = opt.run_query(q_contract_info)
  66. contract_info
  67. commodity_cls = get_price(SUBJECT_MATTER,trade_days.index[0],trade_days.index[0],fields=['close']).values[0][0]
  68. contract_info['price_spread'] = contract_info['exercise_price'] - commodity_cls
  69. if contract_info['price_spread'].max() > 0:
  70. contract_info = contract_info[contract_info['price_spread'] > 0] #选出虚值期权
  71. contract_info = contract_info.sort_values('exercise_price')
  72. else: #全是实值期权
  73. contract_info = contract_info.sort_values('exercise_price',ascending=False)
  74. contract_info
  75. holding_contract2[trade_days.index[0]] = contract_info['code'].iloc[0]
  76. newest_exercise_price = contract_info['exercise_price'].iloc[0]
  77. newest_expire_date = contract_info['last_trade_date'].iloc[0]
  78. print(newest_exercise_price)
  79. print(newest_expire_date)
  80. # 循环访问每一个交易日,判断交易情况
  81. # 规则:持有略虚值看涨期权,待行权价低于现价的 95% 时,平仓原期权合约
  82. # 重新开仓略虚值看涨期权;到期前1天移仓换月至次月合约
  83. for t in trade_days.index[1:]:
  84. # 获取昨日收盘价
  85. pre_cls = get_price(SUBJECT_MATTER, t, t, fields=['pre_close']).values[0][0]
  86. if pre_cls * 0.95 >= newest_exercise_price: # 原虚值变为实值,重新开仓略虚值期权
  87. # 寻找month_idx
  88. for month_idx in range(len(month_split)):
  89. if month_split[month_idx] >= t:
  90. break
  91. q_contract_info = query(opt.OPT_CONTRACT_INFO.code,
  92. opt.OPT_CONTRACT_INFO.trading_code,
  93. opt.OPT_CONTRACT_INFO.name,
  94. opt.OPT_CONTRACT_INFO.exercise_price,
  95. opt.OPT_CONTRACT_INFO.last_trade_date,
  96. # 行权价格,最后交易日
  97. opt.OPT_CONTRACT_INFO.list_date
  98. ).filter(opt.OPT_CONTRACT_INFO.underlying_symbol == SUBJECT_MATTER,
  99. opt.OPT_CONTRACT_INFO.contract_type == 'CO', # 看涨期权
  100. ) # 在交易前上市
  101. contract_info = opt.run_query(q_contract_info)
  102. commodity_cls = get_price(SUBJECT_MATTER, t, t, fields=['close']).values[0][0]
  103. contract_info['price_spread'] = contract_info['exercise_price'] - commodity_cls
  104. if contract_info['price_spread'].max() > 0:
  105. contract_info = contract_info[contract_info['price_spread'] > 0] # 选出虚值期权
  106. contract_info = contract_info.sort_values('exercise_price')
  107. else: # 全是实值期权
  108. contract_info = contract_info.sort_values('exercise_price', ascending=False)
  109. holding_contract2[t] = contract_info['code'].iloc[0]
  110. newest_exercise_price = contract_info['exercise_price'].iloc[0]
  111. newest_expire_date = contract_info['last_trade_date'].iloc[0]
  112. holding_contract2 = holding_contract2.fillna(method='ffill')
  113. holding_contract2
  114. data2 = pd.DataFrame(holding_contract2)
  115. data2.columns = ['holding_contract']
  116. data2 = data2.reindex(columns=['holding_contract','close','last_close'])
  117. last_contract = holding_contract2.iloc[0] #记录上个持仓
  118. for t in data2.index:
  119. #收盘价
  120. q_price = query(opt.OPT_DAILY_PRICE.code,
  121. opt.OPT_DAILY_PRICE.date,
  122. opt.OPT_DAILY_PRICE.close,
  123. ).filter(opt.OPT_DAILY_PRICE.code==data2.loc[t,'holding_contract'],
  124. opt.OPT_DAILY_PRICE.date==t)
  125. price = opt.run_query(q_price)
  126. if price.empty:
  127. continue
  128. else:
  129. price = price['close'][0]
  130. data2.loc[t,'close'] = price
  131. data2
  132. t = data2.index[2]
  133. data2.loc[t,'holding_contract']
  134. q_price = query(opt.OPT_DAILY_PRICE.code,
  135. opt.OPT_DAILY_PRICE.date,
  136. opt.OPT_DAILY_PRICE.close,
  137. ).filter(opt.OPT_DAILY_PRICE.code==data2.loc[t,'holding_contract'],
  138. opt.OPT_DAILY_PRICE.date==t)
  139. price = opt.run_query(q_price)
  140. price
  141. #计算卖出期权的收益
  142. opt_ret2 = pd.Series(0,index=data2.index)
  143. pre_close2 = data2['close'].iloc[0]
  144. for t in data2.index[1:]:
  145. if data2.isna().loc[t,'last_close']: #未换仓,last为空
  146. opt_ret2[t] = -price_gap*(data2.loc[t,'close'] - pre_close2)
  147. else:
  148. opt_ret2[t] = -price_gap*(data2.loc[t,'last_close'] - pre_close2) - 5 #手续费5元
  149. pre_close2 = data2.loc[t,'close']
  150. opt_ret2
  151. #计算持仓收益
  152. commodity_price = get_price(SUBJECT_MATTER,trade_days.index[0],trade_days.index[-1],fields=['close'])['close']
  153. commodity_ret = commodity_price.diff(1).fillna(0)
  154. commodity_ret
  155. #计算净值
  156. init_asset2 = commodity_price.iloc[0]*price_gap
  157. ass2 = init_asset2 + (commodity_ret + opt_ret2).cumsum()
  158. pfl_ret2 = (ass2/ass2.shift(1) - 1).fillna(0)
  159. pfl_nv2 = (1 + pfl_ret2).cumprod()
  160. pfl_nv2
  161. #绘制净值图
  162. plt.figure(figsize=(30, 20))
  163. plt.plot(commodity_price/commodity_price.iloc[0], label='现货净值')
  164. plt.plot(pfl_nv2, label=SUBJECT_MATTER+'备兑看涨策略净值')
  165. plt.legend(loc='upper left', fontsize='large')
  166. plt.xlabel('时间',size=12)
  167. plt.ylabel('净值',size=12)
  168. plt.show()