11_领口认购策略商品主力合约.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. # 领口看涨策略-商品主力合约
  2. # 参考资料:
  3. # - 原始策略来源: https://www.joinquant.com/view/community/detail/bec4688fd7998652edfd929a4ef1f4df
  4. # - 研究网址: https://www.joinquant.com/research?target=research&url=/user/75474983526/notebooks/Options/%E9%A2%86%E5%8F%A3%E7%9C%8B%E6%B6%A8%E7%AD%96%E7%95%A5-%E5%95%86%E5%93%81%E4%B8%BB%E5%8A%9B%E5%90%88%E7%BA%A6.ipynb
  5. # TODO: 添加领口看涨策略商品主力合约相关代码
  6. import jqdata
  7. from jqdata import *
  8. import pandas as pd
  9. import numpy as np
  10. import datetime
  11. import matplotlib.pyplot as plt
  12. from datetime import datetime, timedelta
  13. plt.rcParams['font.sans-serif']=['SimHei']
  14. plt.rcParams['axes.unicode_minus'] = False
  15. def is_last_day_of_month(date_str):
  16. # 将字符串转换为日期对象
  17. date_obj = datetime.strptime(date_str, '%Y-%m-%d')
  18. # 获取下一个日期对象
  19. next_date_obj = date_obj + timedelta(days=1)
  20. # 判断是否为下个月的第一天,如果是,则当前日期为月末
  21. return date_obj.month != next_date_obj.month
  22. def get_last_day_of_month(date_str):
  23. # 将字符串转换为日期对象
  24. date_obj = datetime.strptime(date_str, '%Y-%m-%d')
  25. # 获取下个月的第一天日期对象
  26. next_month_first_day = datetime(date_obj.year, date_obj.month + 1, 1)
  27. # 从下个月的第一天减去一天,得到当前月的月末日期对象
  28. last_day_of_month = next_month_first_day - timedelta(days=1)
  29. # 返回月末日期的字符串形式
  30. return last_day_of_month.strftime('%Y-%m-%d')
  31. #获取期权
  32. def getContract(code,date,type="CO"): #CO为认购,PO为认沽
  33. q_contract_info = query(opt.OPT_CONTRACT_INFO.code,
  34. opt.OPT_CONTRACT_INFO.trading_code,
  35. opt.OPT_CONTRACT_INFO.name,
  36. opt.OPT_CONTRACT_INFO.exercise_price,
  37. opt.OPT_CONTRACT_INFO.last_trade_date,
  38. # 行权价格,最后交易日
  39. opt.OPT_CONTRACT_INFO.list_date
  40. ).filter(opt.OPT_CONTRACT_INFO.underlying_symbol == code,
  41. opt.OPT_CONTRACT_INFO.contract_type == type, # 看涨期权
  42. )
  43. contract_info = opt.run_query(q_contract_info)
  44. commodity_cls = get_price(code, date, date, fields=['close']).values[0][0]
  45. if type == 'CO':
  46. contract_info['price_spread'] = contract_info['exercise_price'] - commodity_cls
  47. else:
  48. contract_info['price_spread'] = commodity_cls - contract_info['exercise_price']
  49. if contract_info['price_spread'].max() > 0:
  50. contract_info = contract_info[contract_info['price_spread'] > 0] # 选出虚值期权
  51. contract_info = contract_info.sort_values('exercise_price')
  52. else: # 全是实值期权
  53. contract_info = contract_info.sort_values('exercise_price', ascending=False)
  54. return(contract_info['code'].iloc[0])
  55. #获取期权价格等信息
  56. def getContractPrice(code,last_trade_date,type='CO'):
  57. q_contract_info = query(opt.OPT_CONTRACT_INFO.code,
  58. opt.OPT_CONTRACT_INFO.trading_code,
  59. opt.OPT_CONTRACT_INFO.name,
  60. opt.OPT_CONTRACT_INFO.exercise_price,
  61. opt.OPT_CONTRACT_INFO.last_trade_date,
  62. # 行权价格,最后交易日
  63. opt.OPT_CONTRACT_INFO.list_date
  64. ).filter(opt.OPT_CONTRACT_INFO.code == code,
  65. opt.OPT_CONTRACT_INFO.contract_type == type, # 期权类型
  66. opt.OPT_CONTRACT_INFO.last_trade_date >= last_trade_date
  67. )
  68. contract_info = opt.run_query(q_contract_info)
  69. return(contract_info)
  70. #处理合约切换标记
  71. def contractChange(holding_contract,main_list,error_date):
  72. data2 = pd.DataFrame(holding_contract)
  73. data2.columns = ['holding_contract']
  74. data2 = data2.reindex(columns=['holding_contract','close','last_close'])
  75. data2 = data2.drop(error_date)
  76. main_list = main_list.drop(error_date)
  77. last_contract = holding_contract.iloc[0] #记录上个持仓
  78. for i in range(0,len(data2.index)):
  79. t = data2.index[i]
  80. if last_contract == data2.loc[t,'holding_contract']: #期权未换仓
  81. q_price = query(opt.OPT_DAILY_PRICE.code,
  82. opt.OPT_DAILY_PRICE.date,
  83. opt.OPT_DAILY_PRICE.close,
  84. ).filter(opt.OPT_DAILY_PRICE.code==last_contract,
  85. opt.OPT_DAILY_PRICE.date==t)
  86. price = opt.run_query(q_price)['close'][0]
  87. data2.loc[t,'close'] = price
  88. else: #合约换仓
  89. q_price = query(opt.OPT_DAILY_PRICE.code,
  90. opt.OPT_DAILY_PRICE.date,
  91. opt.OPT_DAILY_PRICE.close,
  92. ).filter(opt.OPT_DAILY_PRICE.code==data2.loc[t,'holding_contract'],
  93. opt.OPT_DAILY_PRICE.date==t)
  94. price = opt.run_query(q_price)['close'][0]
  95. data2.loc[t,'close'] = price
  96. #收盘价,旧
  97. q_price = query(opt.OPT_DAILY_PRICE.code,
  98. opt.OPT_DAILY_PRICE.date,
  99. opt.OPT_DAILY_PRICE.close,
  100. ).filter(opt.OPT_DAILY_PRICE.code==last_contract,
  101. opt.OPT_DAILY_PRICE.date==data2.index[i-1])
  102. price = opt.run_query(q_price)['close'][0]
  103. data2.loc[t,'last_close'] = price
  104. last_contract = data2.loc[t,'holding_contract']
  105. return(data2)
  106. def optionProfit(data2,price_gap,fee):
  107. #计算平仓期权的收益
  108. opt_ret2 = pd.Series(0,index=data2.index)
  109. pre_close2 = data2['close'].iloc[0]
  110. for t in data2.index[1:]:
  111. if data2.isna().loc[t,'last_close']: #未换仓,last为空
  112. opt_ret2[t] = -price_gap*(data2.loc[t,'close'] - pre_close2)
  113. else:
  114. opt_ret2[t] = -price_gap*(data2.loc[t,'last_close'] - pre_close2) - fee #手续费
  115. pre_close2 = data2.loc[t,'close']
  116. return(opt_ret2)
  117. # 设置各项参数
  118. # 合约代码
  119. symbol = 'AU'
  120. #手续费
  121. fee = 5
  122. #合约价差
  123. price_gap = 10
  124. #起始时间
  125. starttime = '2023-03-01'
  126. endtime = '2024-01-01'
  127. SUBJECT_MATTER = get_dominant_future(symbol,date = starttime)
  128. #获取交易时间和时间间隔(频率:月)
  129. #根据不同交易日分割月份
  130. #指定回测的起始时间
  131. trade_days = pd.Series(index=jqdata.get_trade_days(starttime,endtime))
  132. trade_days.index = pd.to_datetime(trade_days.index)
  133. ##持仓情况
  134. #主力合约列表
  135. main_list = pd.Series(index=trade_days.index)
  136. main_list[trade_days.index[0]] = SUBJECT_MATTER
  137. holding_contract_CO = pd.Series(index=trade_days.index)
  138. #获取首个认购持仓合约
  139. contract = getContract(SUBJECT_MATTER,trade_days.index[0],type='CO')
  140. holding_contract_CO[trade_days.index[0]] = contract
  141. print(holding_contract_CO[:3])
  142. #获取首个认沽持仓合约
  143. holding_contract_PO = pd.Series(index=trade_days.index)
  144. contract = getContract(SUBJECT_MATTER,trade_days.index[0],type='PO')
  145. holding_contract_PO[trade_days.index[0]] = contract
  146. print(holding_contract_PO[:3])
  147. #循环访问每一个交易日,判断交易情况
  148. #规则:判断当前主力合约对应的期权,持有略虚值看涨期权,待行权价低于现价的95%时,平仓原期权合约,重新开仓略虚值看涨期权
  149. error_date =[]
  150. pre_hold_CO = holding_contract_CO[0]
  151. pre_hold_PO = holding_contract_PO[0]
  152. for i in range(1,len(trade_days)):
  153. pre_day = trade_days.index[i-1]
  154. cur_day = trade_days.index[i]
  155. cur_main = get_dominant_future(symbol,date = cur_day) #当前主力合约
  156. pre_main = get_dominant_future(symbol,date = pre_day) #上一个交易日的主力合约
  157. main_list[cur_day] = cur_main
  158. if cur_main != pre_main: #主力合约切换
  159. contract_CO = getContract(cur_main,cur_day,type='CO')
  160. contract_PO = getContract(cur_main,cur_day,type='PO')
  161. else:
  162. pre_cls = get_price(cur_main, cur_day, cur_day, fields=['pre_close']).values[0][0]
  163. contract_info_CO = getContractPrice(pre_hold_CO,cur_day,"CO")
  164. pre_exercise_price_CO = contract_info_CO
  165. contract_info_PO = getContractPrice(pre_hold_PO,cur_day,"PO")
  166. pre_exercise_price_PO = contract_info_PO
  167. if contract_info_CO.empty | contract_info_PO.empty:
  168. error_date.append(cur_day)
  169. continue
  170. else:
  171. pre_exercise_price_CO = pre_exercise_price_CO['exercise_price'][0]
  172. pre_exercise_price_PO = pre_exercise_price_PO['exercise_price'][0]
  173. if pre_cls * 0.95 >= pre_exercise_price_CO:
  174. contract_CO = getContract(pre_main,cur_day)
  175. else:
  176. contract_CO = pre_hold_CO
  177. if pre_cls <= 0.95 * pre_exercise_price_PO:
  178. contract_PO = getContract(pre_main,cur_day,type='PO')
  179. else:
  180. contract_PO = pre_hold_PO
  181. holding_contract_CO[cur_day] = contract_CO
  182. pre_hold_CO = contract_CO
  183. holding_contract_PO[cur_day] = contract_PO
  184. pre_hold_PO = contract_PO
  185. holding_contract_CO = holding_contract_CO.fillna(method='ffill')
  186. holding_contract_PO = holding_contract_PO.fillna(method='ffill')
  187. data_list_CO = contractChange(holding_contract_CO,main_list,error_date)
  188. data_list_PO = contractChange(holding_contract_PO,main_list,error_date)
  189. #计算平仓期权的收益
  190. opt_ret_CO = optionProfit(data_list_CO,price_gap,fee)
  191. opt_ret_PO = optionProfit(data_list_PO,price_gap,fee)
  192. opt_ret = opt_ret_CO + opt_ret_PO
  193. print(opt_ret)
  194. #计算持仓收益
  195. commodity_price = [get_price(main_list[t],data_list_CO.index[t],data_list_CO.index[t],fields=['close'])['close'][0] for t in range(0,len(data_list_CO.index))]
  196. commodity_price = pd.Series(commodity_price,index=data_list_CO.index)
  197. commodity_ret = commodity_price.diff(1).fillna(0)
  198. commodity_ret
  199. #计算净值
  200. init_asset2 = commodity_price.iloc[0]*price_gap
  201. ass2 = init_asset2 + (commodity_ret + opt_ret).cumsum()
  202. pfl_ret2 = (ass2/ass2.shift(1) - 1).fillna(0)
  203. pfl_nv2 = (1 + pfl_ret2).cumprod()
  204. pfl_nv2
  205. #绘制净值图
  206. plt.figure(figsize=(30,20))
  207. plt.plot(commodity_price/commodity_price.iloc[0], label='现货净值')
  208. plt.plot(pfl_nv2, label=symbol+'领式看涨策略净值')
  209. plt.legend(loc='upper left', fontsize='large')
  210. plt.xlabel('时间',size=12)
  211. plt.ylabel('净值',size=12)
  212. plt.show()