etf_MomentumRotation.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. # 克隆自聚宽文章:https://www.joinquant.com/post/34314
  2. # 标题:8年10倍,回撤小,有滑点!ETF动量简单轮动策略!
  3. # 作者:萌新王富贵
  4. '''
  5. 优化说明:
  6. 1.使用修正标准分
  7. rsrs_score的算法有:
  8. 仅斜率slope,效果一般;
  9. 仅标准分zscore,效果不错;
  10. 修正标准分 = zscore * r2,效果最佳;
  11. 右偏标准分 = 修正标准分 * slope,效果不错。
  12. 2.将原策略的每次持有两只etf改成只买最优的一个,收益显著提高
  13. 3.将每周调仓换成每日调仓,收益显著提高
  14. 4.因为交易etf,所以手续费设为万分之三,印花税设为零,未设置滑点
  15. 5.修改股票池中候选etf,删除银行,红利等收益较弱品种,增加纳指etf以增加不同国家市场间轮动的可能性
  16. 6.根据研报,默认参数介已设定为最优
  17. 7.加入防未来函数
  18. 8.增加择时与选股模块的打印日志,方便观察每笔操作依据
  19. '''
  20. #导入函数库
  21. from jqdata import *
  22. import numpy as np
  23. #初始化函数
  24. def initialize(context):
  25. # 设定沪深300作为基准
  26. set_benchmark('000300.XSHG')
  27. # 用真实价格交易
  28. set_option('use_real_price', True)
  29. # 打开防未来函数
  30. set_option("avoid_future_data", True)
  31. # 将滑点设置为0.001
  32. set_slippage(FixedSlippage(0.001))
  33. # 设置交易成本万分之三
  34. set_order_cost(OrderCost(open_tax=0, close_tax=0, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5),
  35. type='fund')
  36. # 过滤order中低于error级别的日志
  37. log.set_level('order', 'error')
  38. # 初始化各类全局变量
  39. #股票池
  40. g.stock_pool = [
  41. # '510050.XSHG', #上证50
  42. '159915.XSHE', #创业板
  43. # '513100.XSHG', #纳指
  44. # '159928.XSHE', #中证消费
  45. '510300.XSHG', # 沪深300ETF
  46. '510500.XSHG', # 中证500ETF
  47. ]
  48. #动量轮动参数
  49. g.stock_num = 1 #买入评分最高的前stock_num只股票
  50. g.momentum_day = 29 #最新动量参考最近momentum_day的
  51. #rsrs择时参数
  52. g.ref_stock = '000300.XSHG' #用ref_stock做择时计算的基础数据
  53. g.N = 18 # 计算最新斜率slope,拟合度r2参考最近N天
  54. g.M = 600 # 计算最新标准分zscore,rsrs_score参考最近M天
  55. g.score_threshold = 0.7 # rsrs标准分指标阈值
  56. #ma择时参数
  57. g.mean_day = 20 #计算结束ma收盘价,参考最近mean_day
  58. g.mean_diff_day = 3 #计算初始ma收盘价,参考(mean_day + mean_diff_day)天前,窗口为mean_diff_day的一段时间
  59. g.slope_series = initial_slope_series()[:-1] # 除去回测第一天的slope,避免运行时重复加入
  60. # 设置交易时间,每天运行
  61. run_daily(my_trade, time='11:30', reference_security='000300.XSHG')
  62. run_daily(check_lose, time='open', reference_security='000300.XSHG')
  63. run_daily(print_trade_info, time='15:30', reference_security='000300.XSHG')
  64. #1-1 选股模块-动量因子轮动
  65. #基于股票年化收益和判定系数打分,并按照分数从大到小排名
  66. def get_rank(stock_pool):
  67. score_list = []
  68. for stock in g.stock_pool:
  69. data = attribute_history(stock, g.momentum_day, '1d', ['close']) #过去29天的收盘价
  70. y = data['log'] = np.log(data.close)
  71. x = data['num'] = np.arange(data.log.size)
  72. slope, intercept = np.polyfit(x, y, 1)
  73. annualized_returns = math.pow(math.exp(slope), 250) - 1
  74. r_squared = 1 - (sum((y - (slope * x + intercept))**2) / ((len(y) - 1) * np.var(y, ddof=1)))
  75. score = annualized_returns * r_squared
  76. score_list.append(score)
  77. stock_dict=dict(zip(g.stock_pool, score_list))
  78. sort_list=sorted(stock_dict.items(), key=lambda item:item[1], reverse=True) #True为降序
  79. code_list=[]
  80. for i in range((len(g.stock_pool))):
  81. code_list.append(sort_list[i][0])
  82. rank_stock = code_list[0:g.stock_num]
  83. print(code_list[0:5])
  84. return rank_stock
  85. #2-1 择时模块-计算线性回归统计值
  86. #对输入的自变量每日最低价x(series)和因变量每日最高价y(series)建立OLS回归模型,返回元组(截距,斜率,拟合度)
  87. def get_ols(x, y):
  88. slope, intercept = np.polyfit(x, y, 1)
  89. r2 = 1 - (sum((y - (slope * x + intercept))**2) / ((len(y) - 1) * np.var(y, ddof=1)))
  90. return (intercept, slope, r2)
  91. #2-2 择时模块-设定初始斜率序列
  92. #通过前M日最高最低价的线性回归计算初始的斜率,返回斜率的列表
  93. def initial_slope_series():
  94. data = attribute_history(g.ref_stock, g.N + g.M, '1d', ['high', 'low'])
  95. return [get_ols(data.low[i:i+g.N], data.high[i:i+g.N])[1] for i in range(g.M)]
  96. #2-3 择时模块-计算标准分
  97. #通过斜率列表计算并返回截至回测结束日的最新标准分
  98. def get_zscore(slope_series):
  99. mean = np.mean(slope_series)
  100. std = np.std(slope_series)
  101. return (slope_series[-1] - mean) / std
  102. #2-4 择时模块-计算综合信号
  103. #1.获得rsrs与MA信号,rsrs信号算法参考优化说明,MA信号为一段时间两个端点的MA数值比较大小
  104. #2.信号同时为True时返回买入信号,同为False时返回卖出信号,其余情况返回持仓不变信号
  105. def get_timing_signal(stock):
  106. #计算MA信号
  107. close_data = attribute_history(g.ref_stock, g.mean_day + g.mean_diff_day, '1d', ['close'])
  108. today_MA = close_data.close[g.mean_diff_day:].mean()
  109. before_MA = close_data.close[:-g.mean_diff_day].mean()
  110. #计算rsrs信号
  111. high_low_data = attribute_history(g.ref_stock, g.N, '1d', ['high', 'low'])
  112. intercept, slope, r2 = get_ols(high_low_data.low, high_low_data.high)
  113. g.slope_series.append(slope)
  114. rsrs_score = get_zscore(g.slope_series[-g.M:]) * r2
  115. #综合判断所有信号
  116. if rsrs_score > g.score_threshold and today_MA > before_MA:
  117. print('BUY')
  118. return "BUY"
  119. elif rsrs_score < -g.score_threshold and today_MA < before_MA:
  120. print('SELL')
  121. return "SELL"
  122. else:
  123. print('KEEP')
  124. return "KEEP"
  125. #3-1 过滤模块-过滤停牌股票
  126. #输入选股列表,返回剔除停牌股票后的列表
  127. def filter_paused_stock(stock_list):
  128. current_data = get_current_data()
  129. return [stock for stock in stock_list if not current_data[stock].paused]
  130. #3-2 过滤模块-过滤ST及其他具有退市标签的股票
  131. #输入选股列表,返回剔除ST及其他具有退市标签股票后的列表
  132. def filter_st_stock(stock_list):
  133. current_data = get_current_data()
  134. return [stock for stock in stock_list
  135. if not current_data[stock].is_st
  136. and 'ST' not in current_data[stock].name
  137. and '*' not in current_data[stock].name
  138. and '退' not in current_data[stock].name]
  139. #3-3 过滤模块-过滤涨停的股票
  140. #输入选股列表,返回剔除未持有且已涨停股票后的列表
  141. def filter_limitup_stock(context, stock_list):
  142. last_prices = history(1, unit='1m', field='close', security_list=stock_list)
  143. current_data = get_current_data()
  144. # 已存在于持仓的股票即使涨停也不过滤,避免此股票再次可买,但因被过滤而导致选择别的股票
  145. return [stock for stock in stock_list if stock in context.portfolio.positions.keys()
  146. or last_prices[stock][-1] < current_data[stock].high_limit]
  147. #3-4 过滤模块-过滤跌停的股票
  148. #输入股票列表,返回剔除已跌停股票后的列表
  149. def filter_limitdown_stock(context, stock_list):
  150. last_prices = history(1, unit='1m', field='close', security_list=stock_list)
  151. current_data = get_current_data()
  152. return [stock for stock in stock_list if stock in context.portfolio.positions.keys()
  153. or last_prices[stock][-1] > current_data[stock].low_limit]
  154. #4-1 交易模块-自定义下单
  155. #报单成功返回报单(不代表一定会成交),否则返回None,应用于
  156. def order_target_value_(security, value):
  157. if value == 0:
  158. log.debug("Selling out %s" % (security))
  159. else:
  160. log.debug("Order %s to value %f" % (security, value))
  161. # 如果股票停牌,创建报单会失败,order_target_value 返回None
  162. # 如果股票涨跌停,创建报单会成功,order_target_value 返回Order,但是报单会取消
  163. # 部成部撤的报单,聚宽状态是已撤,此时成交量>0,可通过成交量判断是否有成交
  164. return order_target_value(security, value)
  165. #4-2 交易模块-开仓
  166. #买入指定价值的证券,报单成功并成交(包括全部成交或部分成交,此时成交量大于0)返回True,报单失败或者报单成功但被取消(此时成交量等于0),返回False
  167. def open_position(security, value):
  168. order = order_target_value_(security, value)
  169. if order != None and order.filled > 0:
  170. return True
  171. return False
  172. #4-3 交易模块-平仓
  173. #卖出指定持仓,报单成功并全部成交返回True,报单失败或者报单成功但被取消(此时成交量等于0),或者报单非全部成交,返回False
  174. def close_position(position):
  175. security = position.security
  176. order = order_target_value_(security, 0) # 可能会因停牌失败
  177. if order != None:
  178. if order.status == OrderStatus.held and order.filled == order.amount:
  179. return True
  180. return False
  181. #4-4 交易模块-调仓
  182. #当择时信号为买入时开始调仓,输入过滤模块处理后的股票列表,执行交易模块中的开平仓操作
  183. def adjust_position(context, buy_stocks):
  184. for stock in context.portfolio.positions:
  185. if stock not in buy_stocks:
  186. log.info("[%s]已不在应买入列表中" % (stock))
  187. position = context.portfolio.positions[stock]
  188. close_position(position)
  189. else:
  190. log.info("[%s]已经持有无需重复买入" % (stock))
  191. # 根据股票数量分仓
  192. # 此处只根据可用金额平均分配购买,不能保证每个仓位平均分配
  193. position_count = len(context.portfolio.positions)
  194. if g.stock_num > position_count:
  195. value = context.portfolio.cash / (g.stock_num - position_count)
  196. for stock in buy_stocks:
  197. if context.portfolio.positions[stock].total_amount == 0:
  198. if open_position(stock, value):
  199. if len(context.portfolio.positions) == g.stock_num:
  200. break
  201. #4-5 交易模块-择时交易
  202. #结合择时模块综合信号进行交易
  203. def my_trade(context):
  204. #获取选股列表并过滤掉:st,st*,退市,涨停,跌停,停牌
  205. check_out_list = get_rank(g.stock_pool)
  206. check_out_list = filter_st_stock(check_out_list)
  207. check_out_list = filter_limitup_stock(context, check_out_list)
  208. check_out_list = filter_limitdown_stock(context, check_out_list)
  209. check_out_list = filter_paused_stock(check_out_list)
  210. print('今日自选股:{}'.format(check_out_list))
  211. #获取综合择时信号
  212. timing_signal = get_timing_signal(g.ref_stock)
  213. print('今日择时信号:{}'.format(timing_signal))
  214. #开始交易
  215. if timing_signal == 'SELL':
  216. for stock in context.portfolio.positions:
  217. position = context.portfolio.positions[stock]
  218. close_position(position)
  219. elif timing_signal == 'BUY' or timing_signal == 'KEEP':
  220. adjust_position(context, check_out_list)
  221. else:
  222. pass
  223. #4-6 交易模块-止损
  224. #检查持仓并进行必要的止损操作
  225. def check_lose(context):
  226. for position in list(context.portfolio.positions.values()):
  227. securities=position.security
  228. cost=position.avg_cost
  229. price=position.price
  230. ret=100*(price/cost-1)
  231. value=position.value
  232. amount=position.total_amount
  233. #这里设定80%止损几乎等同不止损,因为止损在指数etf策略中影响不大
  234. if ret <=-80:
  235. order_target_value(position.security, 0)
  236. print("!!!!!!触发止损信号: 标的={},标的价值={},浮动盈亏={}% !!!!!!"
  237. .format(securities,format(value,'.2f'),format(ret,'.2f')))
  238. #5-1 复盘模块-打印
  239. #打印每日持仓信息
  240. def print_trade_info(context):
  241. #打印当天成交记录
  242. trades = get_trades()
  243. for _trade in trades.values():
  244. print('成交记录:'+str(_trade))
  245. #打印账户信息
  246. for position in list(context.portfolio.positions.values()):
  247. securities=position.security
  248. cost=position.avg_cost
  249. price=position.price
  250. ret=100*(price/cost-1)
  251. value=position.value
  252. amount=position.total_amount
  253. print('代码:{}'.format(securities))
  254. print('成本价:{}'.format(format(cost,'.2f')))
  255. print('现价:{}'.format(price))
  256. print('收益率:{}%'.format(format(ret,'.2f')))
  257. print('持仓(股):{}'.format(amount))
  258. print('市值:{}'.format(format(value,'.2f')))
  259. print('一天结束')
  260. print('———————————————————————————————————————分割线————————————————————————————————————————')